BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 31832306)

  • 1. Engineering State-of-the-Art Plasmonic Nanomaterials for SERS-Based Clinical Liquid Biopsy Applications.
    Wang J; Koo KM; Wang Y; Trau M
    Adv Sci (Weinh); 2019 Dec; 6(23):1900730. PubMed ID: 31832306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SERS biosensors for liquid biopsy towards cancer diagnosis by detection of various circulating biomarkers: current progress and perspectives.
    Lyu N; Hassanzadeh-Barforoushi A; Rey Gomez LM; Zhang W; Wang Y
    Nano Converg; 2024 May; 11(1):22. PubMed ID: 38811455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-Dimensional Surface-Enhanced Raman Scattering Platforms: Large-Scale Plasmonic Hotspots for New Applications in Sensing, Microreaction, and Data Storage.
    Phan-Quang GC; Han X; Koh CSL; Sim HYF; Lay CL; Leong SX; Lee YH; Pazos-Perez N; Alvarez-Puebla RA; Ling XY
    Acc Chem Res; 2019 Jul; 52(7):1844-1854. PubMed ID: 31180637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SERS as a Probe of Surface Chemistry Enabled by Surface-Accessible Plasmonic Nanomaterials.
    Xu Y; Zhang Y; Li C; Ye Z; Bell SEJ
    Acc Chem Res; 2023 Aug; 56(15):2072-2083. PubMed ID: 37436068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Progress on Liquid Biopsy Analysis using Surface-Enhanced Raman Spectroscopy.
    Zhang Y; Mi X; Tan X; Xiang R
    Theranostics; 2019; 9(2):491-525. PubMed ID: 30809289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct surface-enhanced Raman scattering (SERS) spectroscopy of nucleic acids: from fundamental studies to real-life applications.
    Garcia-Rico E; Alvarez-Puebla RA; Guerrini L
    Chem Soc Rev; 2018 Jul; 47(13):4909-4923. PubMed ID: 29717723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanomaterials meet surface-enhanced Raman scattering towards enhanced clinical diagnosis: a review.
    Yuan K; Jurado-Sánchez B; Escarpa A
    J Nanobiotechnology; 2022 Dec; 20(1):537. PubMed ID: 36544151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiplexed Liquid Biopsy and Tumor Imaging Using Surface-Enhanced Raman Scattering.
    Dell'Olio F
    Biosensors (Basel); 2021 Nov; 11(11):. PubMed ID: 34821665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Paper-based plasmonic substrates as surface-enhanced Raman scattering spectroscopy platforms for cell culture applications.
    Romo-Herrera JM; Juarez-Moreno K; Guerrini L; Kang Y; Feliu N; Parak WJ; Alvarez-Puebla RA
    Mater Today Bio; 2021 Jun; 11():100125. PubMed ID: 34485892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advanced liquid biopsy technologies for circulating biomarker detection.
    Soda N; Rehm BHA; Sonar P; Nguyen NT; Shiddiky MJA
    J Mater Chem B; 2019 Nov; 7(43):6670-6704. PubMed ID: 31646316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene-Based Strategies in Liquid Biopsy and in Viral Diseases Diagnosis.
    Cordaro A; Neri G; Sciortino MT; Scala A; Piperno A
    Nanomaterials (Basel); 2020 May; 10(6):. PubMed ID: 32466536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid Nanoplasmonic Porous Biomaterial Scaffold for Liquid Biopsy Diagnostics Using Extracellular Vesicles.
    Rojalin T; Koster HJ; Liu J; Mizenko RR; Tran D; Wachsmann-Hogiu S; Carney RP
    ACS Sens; 2020 Sep; 5(9):2820-2833. PubMed ID: 32935542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photonic technologies for liquid biopsies: recent advances and open research challenges.
    Dell'Olio F; Su J; Huser T; Sottile V; Cortés-Hernández LE; Alix-Panabières C
    Laser Photon Rev; 2021 Jan; 15(1):. PubMed ID: 35360260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SERS Tags for Biomedical Detection and Bioimaging.
    Liu H; Gao X; Xu C; Liu D
    Theranostics; 2022; 12(4):1870-1903. PubMed ID: 35198078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designing surface-enhanced Raman scattering (SERS) platforms beyond hotspot engineering: emerging opportunities in analyte manipulations and hybrid materials.
    Lee HK; Lee YH; Koh CSL; Phan-Quang GC; Han X; Lay CL; Sim HYF; Kao YC; An Q; Ling XY
    Chem Soc Rev; 2019 Feb; 48(3):731-756. PubMed ID: 30475351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ZnO Nanocages Decorated with Au@AgAu Yolk-Shell Nanomaterials for SERS-Based Detection of Hyperuricemia.
    Lien MC; Yeh IH; Tadepalli S; Liu KK
    ACS Omega; 2024 Apr; 9(14):16160-16167. PubMed ID: 38617613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-enhanced Raman scattering biosensors for detection of oncomiRs in breast cancer.
    Chauhan P; Bhargava A; Kumari R; Ratre P; Tiwari R; Kumar Srivastava R; Yu Goryacheva I; Kumar Mishra P
    Drug Discov Today; 2022 Aug; 27(8):2121-2136. PubMed ID: 35460892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liquid biopsy: current technology and clinical applications.
    Nikanjam M; Kato S; Kurzrock R
    J Hematol Oncol; 2022 Sep; 15(1):131. PubMed ID: 36096847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic Vesicles of Amphiphilic Nanocrystals: Optically Active Multifunctional Platform for Cancer Diagnosis and Therapy.
    Song J; Huang P; Duan H; Chen X
    Acc Chem Res; 2015 Sep; 48(9):2506-15. PubMed ID: 26134093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.