BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 31832306)

  • 21. Plasmonic Vesicles of Amphiphilic Nanocrystals: Optically Active Multifunctional Platform for Cancer Diagnosis and Therapy.
    Song J; Huang P; Duan H; Chen X
    Acc Chem Res; 2015 Sep; 48(9):2506-15. PubMed ID: 26134093
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expanding applications of SERS through versatile nanomaterials engineering.
    Cardinal MF; Vander Ende E; Hackler RA; McAnally MO; Stair PC; Schatz GC; Van Duyne RP
    Chem Soc Rev; 2017 Jul; 46(13):3886-3903. PubMed ID: 28640313
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extracellular vesicle-based liquid biopsy biomarkers and their application in precision immuno-oncology.
    Asleh K; Dery V; Taylor C; Davey M; Djeungoue-Petga MA; Ouellette RJ
    Biomark Res; 2023 Nov; 11(1):99. PubMed ID: 37978566
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surface-Enhanced Raman Spectroscopy for Bioanalysis: Reliability and Challenges.
    Zong C; Xu M; Xu LJ; Wei T; Ma X; Zheng XS; Hu R; Ren B
    Chem Rev; 2018 May; 118(10):4946-4980. PubMed ID: 29638112
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface-Enhanced Raman Sensing of Semi-Volatile Organic Compounds by Plasmonic Nanostructures.
    Ly NH; Son SJ; Jang S; Lee C; Lee JI; Joo SW
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685057
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Toward Quantitative Surface-Enhanced Raman Scattering with Plasmonic Nanoparticles: Multiscale View on Heterogeneities in Particle Morphology, Surface Modification, Interface, and Analytical Protocols.
    Son J; Kim GH; Lee Y; Lee C; Cha S; Nam JM
    J Am Chem Soc; 2022 Dec; 144(49):22337-22351. PubMed ID: 36473154
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dual-Enhanced Raman Scattering-Based Characterization of Stem Cell Differentiation Using Graphene-Plasmonic Hybrid Nanoarray.
    Yang L; Lee JH; Rathnam C; Hou Y; Choi JW; Lee KB
    Nano Lett; 2019 Nov; 19(11):8138-8148. PubMed ID: 31663759
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plasmonic nanomaterials-based flexible strips for the SERS detection of gouty arthritis.
    Lien MC; Yeh IH; Lu YC; Liu KK
    Analyst; 2023 Aug; 148(17):4109-4115. PubMed ID: 37493461
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On-Demand Electromagnetic Hotspot Generation in Surface-Enhanced Raman Scattering Substrates via "Add-On" Plasmonic Patch.
    Gupta P; Luan J; Wang Z; Cao S; Bae SH; Naik RR; Singamaneni S
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):37939-37946. PubMed ID: 31525866
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Emerging Nanotechnologies for Liquid Biopsy: The Detection of Circulating Tumor Cells and Extracellular Vesicles.
    Li W; Wang H; Zhao Z; Gao H; Liu C; Zhu L; Wang C; Yang Y
    Adv Mater; 2019 Nov; 31(45):e1805344. PubMed ID: 30589111
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pathologists and liquid biopsies: to be or not to be?
    Hofman P; Popper HH
    Virchows Arch; 2016 Dec; 469(6):601-609. PubMed ID: 27553354
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Advanced microplastic monitoring using Raman spectroscopy with a combination of nanostructure-based substrates.
    Ly NH; Kim MK; Lee H; Lee C; Son SJ; Zoh KD; Vasseghian Y; Joo SW
    J Nanostructure Chem; 2022; 12(5):865-888. PubMed ID: 35757049
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plasmonic Nanomaterial-Based Optical Biosensing Platforms for Virus Detection.
    Lee J; Takemura K; Park EY
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29027923
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Targets and Tools: Nucleic Acids for Surface-Enhanced Raman Spectroscopy.
    Calderon I; Guerrini L; Alvarez-Puebla RA
    Biosensors (Basel); 2021 Jul; 11(7):. PubMed ID: 34356701
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Review on Integrated ZnO-Based SERS Biosensors and Their Potential in Detecting Biomarkers of Neurodegenerative Diseases.
    Colniță A; Toma VA; Brezeștean IA; Tahir MA; Dina NE
    Biosensors (Basel); 2023 Apr; 13(5):. PubMed ID: 37232860
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Substrates for Surface-Enhanced Raman Scattering Formed on Nanostructured Non-Metallic Materials: Preparation and Characterization.
    Krajczewski J; Ambroziak R; Kudelski A
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33396325
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SPR/SERS dual-mode plasmonic biosensor via catalytic hairpin assembly-induced AuNP network.
    Song C; Zhang J; Jiang X; Gan H; Zhu Y; Peng Q; Fang X; Guo Y; Wang L
    Biosens Bioelectron; 2021 Oct; 190():113376. PubMed ID: 34098358
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surface enhanced Raman spectroscopy for tumor nucleic acid: Towards cancer diagnosis and precision medicine.
    Wu L; Dias A; Diéguez L
    Biosens Bioelectron; 2022 May; 204():114075. PubMed ID: 35183908
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative and Qualitative Analysis of Blood-based Liquid Biopsies to Inform Clinical Decision-making in Prostate Cancer.
    Casanova-Salas I; Athie A; Boutros PC; Del Re M; Miyamoto DT; Pienta KJ; Posadas EM; Sowalsky AG; Stenzl A; Wyatt AW; Mateo J
    Eur Urol; 2021 Jun; 79(6):762-771. PubMed ID: 33422353
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Toward Personalized Cancer Treatment: From Diagnostics to Therapy Monitoring in Miniaturized Electrohydrodynamic Systems.
    Khondakar KR; Dey S; Wuethrich A; Sina AA; Trau M
    Acc Chem Res; 2019 Aug; 52(8):2113-2123. PubMed ID: 31293158
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.