These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 31832424)

  • 21. Selection and validation of reference genes for quantitative real-time PCR studies during Saccharomyces cerevisiae alcoholic fermentation in the presence of sulfite.
    Nadai C; Campanaro S; Giacomini A; Corich V
    Int J Food Microbiol; 2015 Dec; 215():49-56. PubMed ID: 26325600
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Molecular evolution of the sulphite efflux gene SSU1 in Saccharomyces cerevisiae].
    Peng LX; Sun FF; Huang YY; Li ZC
    Yi Chuan; 2013 Nov; 35(11):1317-26. PubMed ID: 24579315
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SSU1 mediates sulphite efflux in Saccharomyces cerevisiae.
    Park H; Bakalinsky AT
    Yeast; 2000 Jul; 16(10):881-8. PubMed ID: 10870099
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distribution of the sulfite resistance gene SSU1-R and the variation in its promoter region in wine yeasts.
    Yuasa N; Nakagawa Y; Hayakawa M; Iimura Y
    J Biosci Bioeng; 2004; 98(5):394-7. PubMed ID: 16233727
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetic characterization of strains of Saccharomyces uvarum from New Zealand wineries.
    Zhang H; Richards KD; Wilson S; Lee SA; Sheehan H; Roncoroni M; Gardner RC
    Food Microbiol; 2015 Apr; 46():92-99. PubMed ID: 25475271
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly cold-active pectinases under wine-like conditions from non-Saccharomyces yeasts for enzymatic production during winemaking.
    Merín MG; Morata de Ambrosini VI
    Lett Appl Microbiol; 2015 May; 60(5):467-74. PubMed ID: 25598190
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adaptation of
    Chebaro Y; Lorenz M; Fa A; Zheng R; Gustin M
    Genetics; 2017 May; 206(1):151-162. PubMed ID: 28235888
    [No Abstract]   [Full Text] [Related]  

  • 28. Reduction of Sulfur Compounds through Genetic Improvement of Native
    Agarbati A; Canonico L; Comitini F; Ciani M
    Foods; 2020 May; 9(5):. PubMed ID: 32443690
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Beyond S. cerevisiae for winemaking: Fermentation-related trait diversity in the genus Saccharomyces.
    Álvarez R; Garces F; Louis EJ; Dequin S; Camarasa C
    Food Microbiol; 2023 Aug; 113():104270. PubMed ID: 37098430
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SSU1 encodes a plasma membrane protein with a central role in a network of proteins conferring sulfite tolerance in Saccharomyces cerevisiae.
    Avram D; Bakalinsky AT
    J Bacteriol; 1997 Sep; 179(18):5971-4. PubMed ID: 9294463
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sulfur and adenine metabolisms are linked, and both modulate sulfite resistance in wine yeast.
    Aranda A; Jiménez-Martí E; Orozco H; Matallana E; Del Olmo M
    J Agric Food Chem; 2006 Aug; 54(16):5839-46. PubMed ID: 16881685
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Convergent adaptation of Saccharomyces uvarum to sulfite, an antimicrobial preservative widely used in human-driven fermentations.
    Macías LG; Flores MG; Adam AC; Rodríguez ME; Querol A; Barrio E; Lopes CA; Pérez-Torrado R
    PLoS Genet; 2021 Nov; 17(11):e1009872. PubMed ID: 34762651
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transcriptomics unravels the adaptive molecular mechanisms of Brettanomyces bruxellensis under SO
    Valdetara F; Škalič M; Fracassetti D; Louw M; Compagno C; du Toit M; Foschino R; Petrovič U; Divol B; Vigentini I
    Food Microbiol; 2020 Sep; 90():103483. PubMed ID: 32336374
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential adaptation to multi-stressed conditions of wine fermentation revealed by variations in yeast regulatory networks.
    Brion C; Ambroset C; Sanchez I; Legras JL; Blondin B
    BMC Genomics; 2013 Oct; 14():681. PubMed ID: 24094006
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Alternative Methods to SO
    Lisanti MT; Blaiotta G; Nioi C; Moio L
    Compr Rev Food Sci Food Saf; 2019 Mar; 18(2):455-479. PubMed ID: 33336947
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of the Viable but Nonculturable (VBNC) State in Saccharomyces cerevisiae.
    Salma M; Rousseaux S; Sequeira-Le Grand A; Divol B; Alexandre H
    PLoS One; 2013; 8(10):e77600. PubMed ID: 24204887
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sulfur dioxide addition at crush alters Saccharomyces cerevisiae strain composition in spontaneous fermentations at two Canadian wineries.
    Morgan SC; Scholl CM; Benson NL; Stone ML; Durall DM
    Int J Food Microbiol; 2017 Mar; 244():96-102. PubMed ID: 28086153
    [TBL] [Abstract][Full Text] [Related]  

  • 38. QTL dissection of Lag phase in wine fermentation reveals a new translocation responsible for Saccharomyces cerevisiae adaptation to sulfite.
    Zimmer A; Durand C; Loira N; Durrens P; Sherman DJ; Marullo P
    PLoS One; 2014; 9(1):e86298. PubMed ID: 24489712
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Construction and evaluation of self-cloning bottom-fermenting yeast with high SSU1 expression.
    Iijima K; Ogata T
    J Appl Microbiol; 2010 Dec; 109(6):1906-13. PubMed ID: 20681972
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Oenological Potential of Hanseniaspora uvarum in Simultaneous and Sequential Co-fermentation with Saccharomyces cerevisiae for Industrial Wine Production.
    Tristezza M; Tufariello M; Capozzi V; Spano G; Mita G; Grieco F
    Front Microbiol; 2016; 7():670. PubMed ID: 27242698
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.