These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
296 related articles for article (PubMed ID: 31832642)
41. Computational modeling of direct neuronal recruitment during intracortical microstimulation in somatosensory cortex. Overstreet CK; Klein JD; Helms Tillery SI J Neural Eng; 2013 Dec; 10(6):066016. PubMed ID: 24280531 [TBL] [Abstract][Full Text] [Related]
42. Muscle synergies obtained from comprehensive mapping of the primary motor cortex forelimb representation using high-frequency, long-duration ICMS. Amundsen Huffmaster SL; Van Acker GM; Luchies CW; Cheney PD J Neurophysiol; 2017 Jul; 118(1):455-470. PubMed ID: 28446586 [TBL] [Abstract][Full Text] [Related]
43. [Changes in the peripheral somatosensory input into the motor cortex after damage to the somatosensory cortical areas in dogs]. Frolov AG; Varga ME; Pavlova OG; Mats VN Zh Vyssh Nerv Deiat Im I P Pavlova; 1989; 39(2):366-9. PubMed ID: 2750299 [No Abstract] [Full Text] [Related]
44. Development of closed-loop neural interface technology in a rat model: combining motor cortex operant conditioning with visual cortex microstimulation. Marzullo TC; Lehmkuhle MJ; Gage GJ; Kipke DR IEEE Trans Neural Syst Rehabil Eng; 2010 Apr; 18(2):117-26. PubMed ID: 20144922 [TBL] [Abstract][Full Text] [Related]
45. The functional consequences of chronic, physiologically effective intracortical microstimulation. Parker RA; Davis TS; House PA; Normann RA; Greger B Prog Brain Res; 2011; 194():145-65. PubMed ID: 21867801 [TBL] [Abstract][Full Text] [Related]
46. Differential involvement of excitatory and inhibitory neurons of cat motor cortex in coincident spike activity related to behavioral context. Putrino D; Brown EN; Mastaglia FL; Ghosh S J Neurosci; 2010 Jun; 30(23):8048-56. PubMed ID: 20534853 [TBL] [Abstract][Full Text] [Related]
47. [Correlation between activities of neurons of sensorimotor and visual cortices after forming a hidden focus of excitation (defensive dominanta) in cortical representation of a forelimb in rabbits]. Karamysheva NN; Bogdanov AV; Galashia AG; Pasikova NV; Mats VN Zh Vyssh Nerv Deiat Im I P Pavlova; 2011; 61(1):67-74. PubMed ID: 21469329 [TBL] [Abstract][Full Text] [Related]
48. A system for neural recording and closed-loop intracortical microstimulation in awake rodents. Venkatraman S; Elkabany K; Long JD; Yao Y; Carmena JM IEEE Trans Biomed Eng; 2009 Jan; 56(1):15-22. PubMed ID: 19224714 [TBL] [Abstract][Full Text] [Related]
49. Removal of GABAergic inhibition alters subthreshold input in neurons in forepaw barrel subfield (FBS) in rat first somatosensory cortex (SI) after digit stimulation. Li CX; Callaway JC; Waters RS Exp Brain Res; 2002 Aug; 145(4):411-28. PubMed ID: 12172653 [TBL] [Abstract][Full Text] [Related]
50. Functional role of exercise-induced cortical organization of sensorimotor cortex after spinal transection. Kao T; Shumsky JS; Knudsen EB; Murray M; Moxon KA J Neurophysiol; 2011 Nov; 106(5):2662-74. PubMed ID: 21865438 [TBL] [Abstract][Full Text] [Related]
51. Design of an experimental setup for delivering intracortical microstimulation in vivo via Spiking Neural Network. Di Florio M; Care M; Beaubois R; Cota VR; Barban F; Levi T; Chiappalone M Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083051 [TBL] [Abstract][Full Text] [Related]
52. Thin-film epidural microelectrode arrays for somatosensory and motor cortex mapping in rat. Hosp JA; Molina-Luna K; Hertler B; Atiemo CO; Stett A; Luft AR J Neurosci Methods; 2008 Jul; 172(2):255-62. PubMed ID: 18582949 [TBL] [Abstract][Full Text] [Related]
53. Population rate dynamics and multineuron firing patterns in sensory cortex. Okun M; Yger P; Marguet SL; Gerard-Mercier F; Benucci A; Katzner S; Busse L; Carandini M; Harris KD J Neurosci; 2012 Nov; 32(48):17108-19. PubMed ID: 23197704 [TBL] [Abstract][Full Text] [Related]
54. Multiple inputs to a population of thalamocortical neurons projecting to cat somatosensory cortex. Waldron JN; Ghosh S; Zarzecki P Exp Brain Res; 1989; 74(1):105-15. PubMed ID: 2924827 [TBL] [Abstract][Full Text] [Related]
55. HCN channels segregate stimulation-evoked movement responses in neocortex and allow for coordinated forelimb movements in rodents. Boychuk JA; Farrell JS; Palmer LA; Singleton AC; Pittman QJ; Teskey GC J Physiol; 2017 Jan; 595(1):247-263. PubMed ID: 27568501 [TBL] [Abstract][Full Text] [Related]
56. Evaluation of acute anodal direct current stimulation-induced effects on somatosensory-evoked responses in the rat. Kunori N; Takashima I Brain Res; 2019 Oct; 1720():146318. PubMed ID: 31276639 [TBL] [Abstract][Full Text] [Related]
57. Responses of cat motor cortex neurons to cortico-cortical and somatosensory inputs. Herman D; Kang R; MacGillis M; Zarzecki P Exp Brain Res; 1985; 57(3):598-604. PubMed ID: 2984038 [TBL] [Abstract][Full Text] [Related]
58. Epidural cerebellar stimulation drives widespread neural synchrony in the intact and stroke perilesional cortex. Abbasi A; Danielsen NP; Leung J; Muhammad AKMG; Patel S; Gulati T J Neuroeng Rehabil; 2021 May; 18(1):89. PubMed ID: 34039346 [TBL] [Abstract][Full Text] [Related]
59. Quantitative analyses of thalamic and cortical origins of neurons projecting to the rostral and caudal forelimb motor areas in the cerebral cortex of rats. Wang Y; Kurata K Brain Res; 1998 Jan; 781(1-2):137-47. PubMed ID: 9507093 [TBL] [Abstract][Full Text] [Related]