BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 31833153)

  • 1. Glutaminyl-tRNA Synthetase from Pseudomonas aeruginosa: Characterization, structure, and development as a screening platform.
    Escamilla Y; Hughes CA; Abendroth J; Dranow DM; Balboa S; Dean FB; Bullard JM
    Protein Sci; 2020 Apr; 29(4):905-918. PubMed ID: 31833153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and Characterization of Chemical Compounds that Inhibit Leucyl-tRNA Synthetase from
    Zamacona R; Chavero PN; Medellin E; Hu Y; Hughes CA; Quach N; Keniry M; Bullard JM
    Curr Drug Discov Technol; 2020; 17(1):119-130. PubMed ID: 30088448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization and structure determination of prolyl-tRNA synthetase from Pseudomonas aeruginosa and development as a screening platform.
    Pena N; Dranow DM; Hu Y; Escamilla Y; Bullard JM
    Protein Sci; 2019 Apr; 28(4):727-737. PubMed ID: 30666738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lysyl-tRNA Synthetase from
    Balboa S; Hu Y; Dean FB; Bullard JM
    SLAS Discov; 2020 Jan; 25(1):57-69. PubMed ID: 31498734
    [No Abstract]   [Full Text] [Related]  

  • 5. Two Forms of Tyrosyl-tRNA Synthetase from
    Hughes CA; Gorabi V; Escamilla Y; Dean FB; Bullard JM
    SLAS Discov; 2020 Oct; 25(9):1072-1086. PubMed ID: 32583746
    [No Abstract]   [Full Text] [Related]  

  • 6. Discovery and Characterization of Chemical Compounds That Inhibit the Function of Aspartyl-tRNA Synthetase from Pseudomonas aeruginosa.
    Corona A; Palmer SO; Zamacona R; Mendez B; Dean FB; Bullard JM
    SLAS Discov; 2018 Mar; 23(3):294-301. PubMed ID: 29186665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of Chemical Compounds That Inhibit the Function of Histidyl-tRNA Synthetase from Pseudomonas aeruginosa.
    Hu Y; Palmer SO; Robles ST; Resto T; Dean FB; Bullard JM
    SLAS Discov; 2018 Jan; 23(1):65-75. PubMed ID: 28745975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and Characterization of a Chemical Compound that Inhibits Methionyl-tRNA Synthetase from Pseudomonas aeruginosa.
    Robles S; Hu Y; Resto T; Dean F; Bullard JM
    Curr Drug Discov Technol; 2017; 14(3):156-168. PubMed ID: 28359232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Connecting anticodon recognition with the active site of Escherichia coli glutaminyl-tRNA synthetase.
    Weygand-Durasević I; Rogers MJ; Söll D
    J Mol Biol; 1994 Jul; 240(2):111-8. PubMed ID: 8027995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of beta-ketophosphonate analogs of glutamyl and glutaminyl adenylate, and selective inhibition of the corresponding bacterial aminoacyl-tRNA synthetases.
    Balg C; Blais SP; Bernier S; Huot JL; Couture M; Lapointe J; Chênevert R
    Bioorg Med Chem; 2007 Jan; 15(1):295-304. PubMed ID: 17049867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and functional analysis of Glutaminyl-tRNA synthetase (TtGlnRS) from Thermus thermophilus HB8 and its complexes.
    Nachiappan M; Jain V; Sharma A; Yogavel M; Jeyakanthan J
    Int J Biol Macromol; 2018 Dec; 120(Pt B):1379-1386. PubMed ID: 30248426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery of a novel class of boron-based antibacterials with activity against gram-negative bacteria.
    Hernandez V; Crépin T; Palencia A; Cusack S; Akama T; Baker SJ; Bu W; Feng L; Freund YR; Liu L; Meewan M; Mohan M; Mao W; Rock FL; Sexton H; Sheoran A; Zhang Y; Zhang YK; Zhou Y; Nieman JA; Anugula MR; Keramane el M; Savariraj K; Reddy DS; Sharma R; Subedi R; Singh R; O'Leary A; Simon NL; De Marsh PL; Mushtaq S; Warner M; Livermore DM; Alley MR; Plattner JJ
    Antimicrob Agents Chemother; 2013 Mar; 57(3):1394-403. PubMed ID: 23295920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How glutaminyl-tRNA synthetase selects glutamine.
    Rath VL; Silvian LF; Beijer B; Sproat BS; Steitz TA
    Structure; 1998 Apr; 6(4):439-49. PubMed ID: 9562563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery and characterization of a novel class of pyrazolopyrimidinedione tRNA synthesis inhibitors.
    Montgomery JI; Smith JF; Tomaras AP; Zaniewski R; McPherson CJ; McAllister LA; Hartman-Neumann S; Arcari JT; Lescoe M; Gutierrez J; Yuan Y; Limberakis C; Miller AA
    J Antibiot (Tokyo); 2015 Jun; 68(6):361-7. PubMed ID: 25464974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A rationally engineered misacylating aminoacyl-tRNA synthetase.
    Bullock TL; Rodríguez-Hernández A; Corigliano EM; Perona JJ
    Proc Natl Acad Sci U S A; 2008 May; 105(21):7428-33. PubMed ID: 18477696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Misaminoacylation by glutaminyl-tRNA synthetase: relaxed specificity in wild-type and mutant enzymes.
    Hoben P; Uemura H; Yamao F; Cheung A; Swanson R; Sumner-Smith M; Söll D
    Fed Proc; 1984 Dec; 43(15):2972-6. PubMed ID: 6389180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fluorescence spectroscopic study of substrate-induced conformational changes in glutaminyl-tRNA synthetase.
    Bhattacharyya T; Roy S
    Biochemistry; 1993 Sep; 32(36):9268-73. PubMed ID: 8369295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aminoacyl-tRNA synthetase inhibitors as potent antibacterials.
    Lv PC; Zhu HL
    Curr Med Chem; 2012; 19(21):3550-63. PubMed ID: 22680640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional communication in the recognition of tRNA by Escherichia coli glutaminyl-tRNA synthetase.
    Rogers MJ; Adachi T; Inokuchi H; Söll D
    Proc Natl Acad Sci U S A; 1994 Jan; 91(1):291-5. PubMed ID: 7506418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Chemical Compounds That Inhibit the Function of Glutamyl-tRNA Synthetase from Pseudomonas aeruginosa.
    Hu Y; Guerrero E; Keniry M; Manrrique J; Bullard JM
    J Biomol Screen; 2015 Oct; 20(9):1160-70. PubMed ID: 26116192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.