BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 31833153)

  • 21. Glutaminyl-tRNA synthetase: from genetics to molecular recognition.
    Ibba M; Hong KW; Söll D
    Genes Cells; 1996 May; 1(5):421-7. PubMed ID: 9078373
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deinococcus glutaminyl-tRNA synthetase is a chimer between proteins from an ancient and the modern pathways of aminoacyl-tRNA formation.
    Deniziak M; Sauter C; Becker HD; Paulus CA; Giegé R; Kern D
    Nucleic Acids Res; 2007; 35(5):1421-31. PubMed ID: 17284460
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The structure of yeast glutaminyl-tRNA synthetase and modeling of its interaction with tRNA.
    Grant TD; Luft JR; Wolfley JR; Snell ME; Tsuruta H; Corretore S; Quartley E; Phizicky EM; Grayhack EJ; Snell EH
    J Mol Biol; 2013 Jul; 425(14):2480-93. PubMed ID: 23583912
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Discovery of ATP-Competitive Inhibitors of tRNAIle Lysidine Synthetase (TilS) by High-Throughput Screening.
    Shapiro AB; Plant H; Walsh J; Sylvester M; Hu J; Gao N; Livchak S; Tentarelli S; Thresher J
    J Biomol Screen; 2014 Sep; 19(8):1137-46. PubMed ID: 24820111
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional connectivity between tRNA binding domains in glutaminyl-tRNA synthetase.
    Sherman JM; Thomann HU; Söll D
    J Mol Biol; 1996 Mar; 256(5):818-28. PubMed ID: 8601833
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure networks of E. coli glutaminyl-tRNA synthetase: effects of ligand binding.
    Sathyapriya R; Vishveshwara S
    Proteins; 2007 Aug; 68(2):541-50. PubMed ID: 17444518
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetic analysis of functional connectivity between substrate recognition domains of Escherichia coli glutaminyl-tRNA synthetase.
    Kitabatake M; Ibba M; Hong KW; Söll D; Inokuchi H
    Mol Gen Genet; 1996 Oct; 252(6):717-22. PubMed ID: 8917315
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evolution of the Glx-tRNA synthetase family: the glutaminyl enzyme as a case of horizontal gene transfer.
    Lamour V; Quevillon S; Diriong S; N'Guyen VC; Lipinski M; Mirande M
    Proc Natl Acad Sci U S A; 1994 Aug; 91(18):8670-4. PubMed ID: 8078941
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adenosine analogs as inhibitors of tyrosyl-tRNA synthetase: Design, synthesis and antibacterial evaluation.
    Wei W; Shi WK; Wang PF; Zeng XT; Li P; Zhang JR; Li Q; Tang ZP; Peng J; Wu LZ; Xie MQ; Liu C; Li XH; Wang YC; Xiao ZP; Zhu HL
    Bioorg Med Chem; 2015 Oct; 23(20):6602-11. PubMed ID: 26404408
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anticodon and acceptor stem nucleotides in tRNA(Gln) are major recognition elements for E. coli glutaminyl-tRNA synthetase.
    Jahn M; Rogers MJ; Söll D
    Nature; 1991 Jul; 352(6332):258-60. PubMed ID: 1857423
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gene descent, duplication, and horizontal transfer in the evolution of glutamyl- and glutaminyl-tRNA synthetases.
    Brown JR; Doolittle WF
    J Mol Evol; 1999 Oct; 49(4):485-95. PubMed ID: 10486006
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis of glutaminyl adenylate analogues that are inhibitors of glutaminyl-tRNA synthetase.
    Bernier S; Dubois DY; Therrien M; Lapointe J; Chênevert R
    Bioorg Med Chem Lett; 2000 Nov; 10(21):2441-4. PubMed ID: 11078196
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glutaminyl-tRNA synthetase.
    Freist W; Gauss DH; Ibba M; Söll D
    Biol Chem; 1997 Oct; 378(10):1103-17. PubMed ID: 9372179
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direct glutaminyl-tRNA biosynthesis and indirect asparaginyl-tRNA biosynthesis in Pseudomonas aeruginosa PAO1.
    Akochy PM; Bernard D; Roy PH; Lapointe J
    J Bacteriol; 2004 Feb; 186(3):767-76. PubMed ID: 14729703
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Substrate selection by aminoacyl-tRNA synthetases.
    Ibba M; Thomann HU; Hong KW; Sherman JM; Weygand-Durasevic I; Sever S; Stange-Thomann N; Praetorius M; Söll D
    Nucleic Acids Symp Ser; 1995; (33):40-2. PubMed ID: 8643392
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis and evaluation of adenosine containing 3-arylfuran-2(5H)-ones as tyrosyl-tRNA synthetase inhibitors.
    Wei W; Liu Q; Li ZZ; Shi WK; Fu X; Liu J; Zhu X; Wang XC; Xu N; Li TF; Jiang FR; Xiao ZP; Zhu HL
    Eur J Med Chem; 2017 Jun; 133():62-68. PubMed ID: 28380394
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of Chemical Compounds That Inhibit Protein Synthesis in Pseudomonas aeruginosa.
    Palmer SO; Hu Y; Keniry M; Bullard JM
    SLAS Discov; 2017 Jul; 22(6):775-782. PubMed ID: 27872201
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inhibitors of aminoacyl-tRNA synthetases as antimycobacterial compounds: An up-to-date review.
    Bouz G; Zitko J
    Bioorg Chem; 2021 May; 110():104806. PubMed ID: 33799176
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interactions between tRNA identity nucleotides and their recognition sites in glutaminyl-tRNA synthetase determine the cognate amino acid affinity of the enzyme.
    Ibba M; Hong KW; Sherman JM; Sever S; Söll D
    Proc Natl Acad Sci U S A; 1996 Jul; 93(14):6953-8. PubMed ID: 8692925
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A water-mediated and substrate-assisted aminoacylation mechanism in the discriminating aminoacyl-tRNA synthetase GlnRS and non-discriminating GluRS.
    Aboelnga MM; Hayward JJ; Gauld JW
    Phys Chem Chem Phys; 2017 Sep; 19(37):25598-25609. PubMed ID: 28905057
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.