These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 31833158)

  • 41. Mercury Stable Isotope Fractionation during Abiotic Dark Oxidation in the Presence of Thiols and Natural Organic Matter.
    Zheng W; Demers JD; Lu X; Bergquist BA; Anbar AD; Blum JD; Gu B
    Environ Sci Technol; 2019 Feb; 53(4):1853-1862. PubMed ID: 30371069
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Recent changes in atmospheric mercury deposition recorded in the sediments of remote equatorial lakes in the Rwenzori Mountains, Uganda.
    Yang H; Engstrom DR; Rose NL
    Environ Sci Technol; 2010 Sep; 44(17):6570-5. PubMed ID: 20681571
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A review of passive sampling systems for ambient air mercury measurements.
    Huang J; Lyman SN; Hartman JS; Gustin MS
    Environ Sci Process Impacts; 2014 Mar; 16(3):374-92. PubMed ID: 24362622
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Emerging investigator series: investigation of mercury emission sources using Hg isotopic compositions of atmospheric mercury at the Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS), Japan.
    Yamakawa A; Takami A; Takeda Y; Kato S; Kajii Y
    Environ Sci Process Impacts; 2019 May; 21(5):809-818. PubMed ID: 30942203
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Stable Isotope Evidence Shows Re-emission of Elemental Mercury Vapor Occurring after Reductive Loss from Foliage.
    Yuan W; Sommar J; Lin CJ; Wang X; Li K; Liu Y; Zhang H; Lu Z; Wu C; Feng X
    Environ Sci Technol; 2019 Jan; 53(2):651-660. PubMed ID: 30501171
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Photo-induced transformations of mercury(II) species in the presence of algae, Chlorella vulgaris.
    Deng L; Fu D; Deng N
    J Hazard Mater; 2009 May; 164(2-3):798-805. PubMed ID: 18834666
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Computational Study on the Photolysis of BrHgONO and the Reactions of BrHgO
    Lam KT; Wilhelmsen CJ; Schwid AC; Jiao Y; Dibble TS
    J Phys Chem A; 2019 Feb; 123(8):1637-1647. PubMed ID: 30676732
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: A critical review.
    O'Connor D; Hou D; Ok YS; Mulder J; Duan L; Wu Q; Wang S; Tack FMG; Rinklebe J
    Environ Int; 2019 May; 126():747-761. PubMed ID: 30878870
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Quantum Chemical Investigation of Snow-Mercury Interactions and Their Implication of Mercury Deposition in the Arctic.
    Ali E; Patel N; Patel S; Asaduzzaman A
    J Phys Chem A; 2023 Mar; 127(11):2554-2563. PubMed ID: 36917741
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mercury photolytic transformation affected by low-molecular-weight natural organics in water.
    He F; Zheng W; Liang L; Gu B
    Sci Total Environ; 2012 Feb; 416():429-35. PubMed ID: 22225824
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Product study of the gas-phase BrO-initiated oxidation of Hg0: evidence for stable Hg1+ compounds.
    Raofie F; Ariya PA
    Environ Sci Technol; 2004 Aug; 38(16):4319-26. PubMed ID: 15382859
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Elemental mercury concentrations and fluxes in the tropical atmosphere and ocean.
    Soerensen AL; Mason RP; Balcom PH; Jacob DJ; Zhang Y; Kuss J; Sunderland EM
    Environ Sci Technol; 2014 Oct; 48(19):11312-9. PubMed ID: 25171182
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Study of inhibition mechanism of NO3- on photoreduction of Hg(II) in artificial water.
    Zhang Y; Sun R; Ma M; Wang D
    Chemosphere; 2012 Apr; 87(2):171-6. PubMed ID: 22209302
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Modeling Mercury in Proteins.
    Parks JM; Smith JC
    Methods Enzymol; 2016; 578():103-22. PubMed ID: 27497164
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Holocene Atmospheric Mercury Levels Reconstructed from Peat Bog Mercury Stable Isotopes.
    Enrico M; Le Roux G; Heimbürger LE; Van Beek P; Souhaut M; Chmeleff J; Sonke JE
    Environ Sci Technol; 2017 Jun; 51(11):5899-5906. PubMed ID: 28440654
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Thunderstorms Increase Mercury Wet Deposition.
    Holmes CD; Krishnamurthy NP; Caffrey JM; Landing WM; Edgerton ES; Knapp KR; Nair US
    Environ Sci Technol; 2016 Sep; 50(17):9343-50. PubMed ID: 27464305
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modeling the OH-Initiated Oxidation of Mercury in the Global Atmosphere without Violating Physical Laws.
    Dibble TS; Tetu HL; Jiao Y; Thackray CP; Jacob DJ
    J Phys Chem A; 2020 Jan; 124(2):444-453. PubMed ID: 31860307
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Photoreduction of mercury(II) in the presence of algae, Anabaena cylindrical.
    Deng L; Wu F; Deng N; Zuo Y
    J Photochem Photobiol B; 2008 May; 91(2-3):117-24. PubMed ID: 18375140
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Relationship between the loading rate of inorganic mercury to aquatic ecosystems and dissolved gaseous mercury production and evasion.
    Poulain AJ; Orihel DM; Amyot M; Paterson MJ; Hintelmann H; Southworth GR
    Chemosphere; 2006 Dec; 65(11):2199-207. PubMed ID: 16860838
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The Existence of Airborne Mercury Nanoparticles.
    Ghoshdastidar AJ; Ariya PA
    Sci Rep; 2019 Jul; 9(1):10733. PubMed ID: 31341248
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.