These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 31833173)
41. [Effect of Applying Hydrochar for Reduction of Ammonia Volatilization and Mechanisms in Paddy Soil]. Yu S; Xue LH; Hua Y; Li DT; Xie F; Feng YF; Sun QY; Yang LZ Huan Jing Ke Xue; 2020 Feb; 41(2):922-931. PubMed ID: 32608754 [TBL] [Abstract][Full Text] [Related]
42. Effects of straw return with N fertilizer reduction on crop yield, plant diseases and pests and potential heavy metal risk in a Chinese rice paddy: A field study of 2 consecutive wheat-rice cycles. Shan A; Pan J; Kang KJ; Pan M; Wang G; Wang M; He Z; Yang X Environ Pollut; 2021 Nov; 288():117741. PubMed ID: 34280743 [TBL] [Abstract][Full Text] [Related]
43. [Effects of Different Fertilization Modes on Greenhouse Gas Emission Characteristics of Paddy Fields in Hot Areas]. Tian W; Wu YZ; Tang SR; Hu YL; Lai QQ; Wen DN; Meng L; Wu CD Huan Jing Ke Xue; 2019 May; 40(5):2426-2434. PubMed ID: 31087884 [TBL] [Abstract][Full Text] [Related]
44. Regulating CH Lan T; Zhang H; Han Y; Deng O; Tang X; Luo L; Zeng J; Chen G; Wang C; Gao X Environ Sci Pollut Res Int; 2021 Apr; 28(14):18246-18259. PubMed ID: 33409996 [TBL] [Abstract][Full Text] [Related]
45. [Comparing the ammonia volatilization characteristic of two typical paddy soil with total wheat straw returning in Taihu Lake region]. Wang J; Wang DJ; Zhang G; Wang Y Huan Jing Ke Xue; 2013 Jan; 34(1):27-33. PubMed ID: 23487914 [TBL] [Abstract][Full Text] [Related]
46. Impacts of low-disturbance dairy manure incorporation on ammonia and greenhouse gas fluxes in a corn silage-winter rye cover crop system. Sherman JF; Young EO; Jokela WE; Cavadini J J Environ Qual; 2021 Jul; 50(4):836-846. PubMed ID: 33861473 [TBL] [Abstract][Full Text] [Related]
47. Nitrogen fertilizer in combination with an ameliorant mitigated yield-scaled greenhouse gas emissions from a coastal saline rice field in southeastern China. Sun L; Ma Y; Li B; Xiao C; Fan L; Xiong Z Environ Sci Pollut Res Int; 2018 Jun; 25(16):15896-15908. PubMed ID: 29589234 [TBL] [Abstract][Full Text] [Related]
48. Reduction in nitrogen fertilizer applications by the use of polymer-coated urea: effect on maize yields and environmental impacts of nitrogen losses. Xie Y; Tang L; Han Y; Yang L; Xie G; Peng J; Tian C; Zhou X; Liu Q; Rong X; Zhang Y J Sci Food Agric; 2019 Mar; 99(5):2259-2266. PubMed ID: 30324669 [TBL] [Abstract][Full Text] [Related]
49. Responses of Rice Yield, N Uptake, NH Wu S; Zhang Z; Sun H; Hu H Plants (Basel); 2023 Jun; 12(13):. PubMed ID: 37447008 [TBL] [Abstract][Full Text] [Related]
50. Being applied at rice or wheat season impacts biochar's effect on gaseous nitrogen pollutants from the wheat growth cycle. Zhang Y; Jeyakumar P; Xia C; Lam SS; Jiang J; Sun H; Shi W Environ Pollut; 2022 Aug; 306():119409. PubMed ID: 35513200 [TBL] [Abstract][Full Text] [Related]
51. Combined effects of nitrogen fertilizer and biochar on greenhouse gas emissions and net ecosystem economic budget from a coastal saline rice field in southeastern China. Sun L; Deng J; Fan C; Li J; Liu Y Environ Sci Pollut Res Int; 2020 May; 27(14):17013-17022. PubMed ID: 32146660 [TBL] [Abstract][Full Text] [Related]
52. Seasonal variations of CH4 and N2O emissions in response to water management of paddy fields located in Southeast China. Hou H; Peng S; Xu J; Yang S; Mao Z Chemosphere; 2012 Oct; 89(7):884-92. PubMed ID: 22673400 [TBL] [Abstract][Full Text] [Related]
53. Spatially explicit estimates of N2 O emissions from croplands suggest climate mitigation opportunities from improved fertilizer management. Gerber JS; Carlson KM; Makowski D; Mueller ND; Garcia de Cortazar-Atauri I; HavlĂk P; Herrero M; Launay M; O'Connell CS; Smith P; West PC Glob Chang Biol; 2016 Oct; 22(10):3383-94. PubMed ID: 27185532 [TBL] [Abstract][Full Text] [Related]
54. [Effect of Film Mulching, Straw Retention, and Nitrogen Fertilization on the N Peng Y; Li HT; Zhang SW; Yang T; Wang XF; Zhou CJ; Wang LQ Huan Jing Ke Xue; 2022 Mar; 43(3):1668-1677. PubMed ID: 35258231 [TBL] [Abstract][Full Text] [Related]
55. Exploring a suitable nitrogen fertilizer rate to reduce greenhouse gas emissions and ensure rice yields in paddy fields. Zhong Y; Wang X; Yang J; Zhao X; Ye X Sci Total Environ; 2016 Sep; 565():420-426. PubMed ID: 27179680 [TBL] [Abstract][Full Text] [Related]
56. Microalgae-derived hydrochar application on rice paddy soil: Higher rice yield but increased gaseous nitrogen loss. Chu Q; Xue L; Cheng Y; Liu Y; Feng Y; Yu S; Meng L; Pan G; Hou P; Duan J; Yang L Sci Total Environ; 2020 May; 717():137127. PubMed ID: 32084683 [TBL] [Abstract][Full Text] [Related]
57. Bentonite hydrochar composites mitigate ammonia volatilization from paddy soil and improve nitrogen use efficiency. Chu Q; Xu S; Xue L; Liu Y; Feng Y; Yu S; Yang L; Xing B Sci Total Environ; 2020 May; 718():137301. PubMed ID: 32105922 [TBL] [Abstract][Full Text] [Related]
58. Effect of phosphate fertilizer application on phosphorus (P) losses from paddy soils in Taihu Lake Region. I. Effect of phosphate fertilizer rate on P losses from paddy soil. Zhang HC; Cao ZH; Shen QR; Wong MH Chemosphere; 2003 Feb; 50(6):695-701. PubMed ID: 12688478 [TBL] [Abstract][Full Text] [Related]
59. Simultaneous effects of biochar and nitrogen fertilization on nitrous oxide and methane emissions from paddy rice. Shaukat M; Samoy-Pascual K; Maas EDVL; Ahmad A J Environ Manage; 2019 Oct; 248():109242. PubMed ID: 31315074 [TBL] [Abstract][Full Text] [Related]
60. Mulched drip irrigation and biochar application reduce gaseous nitrogen emissions, but increase nitrogen uptake and peanut yield. Wang S; Xia G; Zheng J; Wang Y; Chen T; Chi D; Bolan NS; Chang SX; Wang T; Ok YS Sci Total Environ; 2022 Jul; 830():154753. PubMed ID: 35339555 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]