BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 31833280)

  • 1. Optical fiber-based dispersion for spectral discrimination in fluorescence lifetime imaging systems.
    Sagar MAK; Dai B; Chacko J; Weber J; Velten A; Sanders S; White J; Eliceiri K
    J Biomed Opt; 2019 Dec; 25(1):1-17. PubMed ID: 31833280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperdimensional Imaging Contrast Using an Optical Fiber.
    Chacko JV; Lee HN; Wu W; Otegui MS; Eliceiri KW
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33572130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applications of combined spectral lifetime microscopy for biology.
    Yan L; Rueden CT; White JG; Eliceiri KW
    Biotechniques; 2006 Sep; 41(3):249, 251, 253 passim. PubMed ID: 16989084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Demonstration of flat-top beam illumination in widefield multiphoton microscopy.
    Kabir M; Rajput H; Kelkar V; Salazar Coariti A; Toussaint K
    J Biomed Opt; 2019 Nov; 25(1):1-8. PubMed ID: 31729201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient large core fiber-based detection for multi-channel two-photon fluorescence microscopy and spectral unmixing.
    Ducros M; van 't Hoff M; Evrard A; Seebacher C; Schmidt EM; Charpak S; Oheim M
    J Neurosci Methods; 2011 Jun; 198(2):172-80. PubMed ID: 21458489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fiber-based combined optical coherence and multiphoton endomicroscopy.
    Liu G; Chen Z
    J Biomed Opt; 2011 Mar; 16(3):036010. PubMed ID: 21456873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fiber-based fluorescence lifetime imaging of recellularization processes on vascular tissue constructs.
    Alfonso-Garcia A; Shklover J; Sherlock BE; Panitch A; Griffiths LG; Marcu L
    J Biophotonics; 2018 Sep; 11(9):e201700391. PubMed ID: 29781171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-photon excited fluorescence lifetime measurements through a double-clad photonic crystal fiber for tissue micro-endoscopy.
    Knorr F; Yankelevich DR; Liu J; Wachsmann-Hogiu S; Marcu L
    J Biophotonics; 2012 Jan; 5(1):14-9. PubMed ID: 22045513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Volumetric two-photon fluorescence imaging of live neurons using a multimode optical fiber.
    Turcotte R; Schmidt CC; Booth MJ; Emptage NJ
    Opt Lett; 2020 Dec; 45(24):6599-6602. PubMed ID: 33325849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selecting optimal spectral bands for improved detection of autofluorescent biomarkers in multiphoton microscopy.
    Meyer BO; Stella MPJ; Holst B; Nielsen BS; Holmstrøm K; Andersen PE; Marti D
    J Biomed Opt; 2020 Jul; 25(7):1-13. PubMed ID: 32638570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-photon counting multicolor multiphoton fluorescence microscope.
    Buehler C; Kim KH; Greuter U; Schlumpf N; So PT
    J Fluoresc; 2005 Jan; 15(1):41-51. PubMed ID: 15711876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fiber-based platform for synchronous imaging of endogenous and exogenous fluorescence of biological tissue.
    Alfonso-Garcia A; Li C; Bec J; Yankelevich D; Marcu L; Sherlock B
    Opt Lett; 2019 Jul; 44(13):3350-3353. PubMed ID: 31259958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous two-photon spectral and lifetime fluorescence microscopy.
    Bird DK; Eliceiri KW; Fan CH; White JG
    Appl Opt; 2004 Sep; 43(27):5173-82. PubMed ID: 15473237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-photon lifetime imaging of fluorescent probes in intact blood vessels: a window to sub-cellular structural information and binding status.
    Douma K; Megens RT; Reitsma S; Prinzen L; Slaaf DW; Van Zandvoort MA
    Microsc Res Tech; 2007 May; 70(5):467-75. PubMed ID: 17393531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel fluorescence lifetime imaging system that optimizes photon efficiency.
    Colyer RA; Lee C; Gratton E
    Microsc Res Tech; 2008 Mar; 71(3):201-13. PubMed ID: 18008362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning.
    Tang S; Jung W; McCormick D; Xie T; Su J; Ahn YC; Tromberg BJ; Chen Z
    J Biomed Opt; 2009; 14(3):034005. PubMed ID: 19566298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-photon fluorescence correlation spectroscopy through a dual-clad optical fiber.
    Chang YC; Ye JY; Thomas T; Chen Y; Baker JR; Norris TB
    Opt Express; 2008 Aug; 16(17):12640-9. PubMed ID: 18711501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photon Counting System for High-Sensitivity Detection of Bioluminescence at Optical Fiber End.
    Iinuma M; Kadoya Y; Kuroda A
    Methods Mol Biol; 2016; 1461():299-310. PubMed ID: 27424915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-photon microscope using a fiber-based approach for supercontinuum generation and light delivery to a small-footprint optical head.
    Zhao Y; Maguluri G; Daniel Ferguson R; Tu H; Paul K; Boppart SA; Llano DA; Iftimia N
    Opt Lett; 2020 Feb; 45(4):909-912. PubMed ID: 32058502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trapping and two-photon fluorescence excitation of microscopic objects using ultrafast single-fiber optical tweezers.
    Mishra YN; Ingle N; Mohanty SK
    J Biomed Opt; 2011 Oct; 16(10):105003. PubMed ID: 22029347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.