These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 31833518)

  • 1. Large amplitude charge noise and random telegraph fluctuations in room-temperature graphene single-electron transistors.
    Fried JP; Bian X; Swett JL; Kravchenko II; Briggs GAD; Mol JA
    Nanoscale; 2020 Jan; 12(2):871-876. PubMed ID: 31833518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge noise in graphene transistors.
    Heller I; Chatoor S; Männik J; Zevenbergen MA; Oostinga JB; Morpurgo AF; Dekker C; Lemay SG
    Nano Lett; 2010 May; 10(5):1563-7. PubMed ID: 20373788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of the Thermal Noise Limit of Graphene Biotransistors.
    Crosser MS; Brown MA; McEuen PL; Minot ED
    Nano Lett; 2015 Aug; 15(8):5404-7. PubMed ID: 26176844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Random-telegraph-signal noise and device variability in ballistic nanotube transistors.
    Wang NP; Heinze S; Tersoff J
    Nano Lett; 2007 Apr; 7(4):910-3. PubMed ID: 17346090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suspended graphene sensors with improved signal and reduced noise.
    Cheng Z; Li Q; Li Z; Zhou Q; Fang Y
    Nano Lett; 2010 May; 10(5):1864-8. PubMed ID: 20373779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilization of a buffered dielectric to achieve high field-effect carrier mobility in graphene transistors.
    Farmer DB; Chiu HY; Lin YM; Jenkins KA; Xia F; Avouris P
    Nano Lett; 2009 Dec; 9(12):4474-8. PubMed ID: 19883119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charge noise in liquid-gated single-wall carbon nanotube transistors.
    Männik J; Heller I; Janssens AM; Lemay SG; Dekker C
    Nano Lett; 2008 Feb; 8(2):685-8. PubMed ID: 18217786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing the signal-to-noise ratio for biosensing with carbon nanotube transistors.
    Heller I; Männik J; Lemay SG; Dekker C
    Nano Lett; 2009 Jan; 9(1):377-82. PubMed ID: 19072626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Graphene and Aptamer Based Liquid Gated FET-Like Electrochemical Biosensor to Detect Adenosine Triphosphate.
    Mukherjee S; Meshik X; Choi M; Farid S; Datta D; Lan Y; Poduri S; Sarkar K; Baterdene U; Huang CE; Wang YY; Burke P; Dutta M; Stroscio MA
    IEEE Trans Nanobioscience; 2015 Dec; 14(8):967-72. PubMed ID: 26595926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stretchable graphene transistors with printed dielectrics and gate electrodes.
    Lee SK; Kim BJ; Jang H; Yoon SC; Lee C; Hong BH; Rogers JA; Cho JH; Ahn JH
    Nano Lett; 2011 Nov; 11(11):4642-6. PubMed ID: 21973013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene-based liquid-gated field effect transistor for biosensing: Theory and experiments.
    Reiner-Rozman C; Larisika M; Nowak C; Knoll W
    Biosens Bioelectron; 2015 Aug; 70():21-7. PubMed ID: 25791463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. n-Type behavior of graphene supported on Si/SiO(2) substrates.
    Romero HE; Shen N; Joshi P; Gutierrez HR; Tadigadapa SA; Sofo JO; Eklund PC
    ACS Nano; 2008 Oct; 2(10):2037-44. PubMed ID: 19206449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Operation of graphene transistors at gigahertz frequencies.
    Lin YM; Jenkins KA; Valdes-Garcia A; Small JP; Farmer DB; Avouris P
    Nano Lett; 2009 Jan; 9(1):422-6. PubMed ID: 19099364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Centimeter-long and large-scale micropatterns of reduced graphene oxide films: fabrication and sensing applications.
    He Q; Sudibya HG; Yin Z; Wu S; Li H; Boey F; Huang W; Chen P; Zhang H
    ACS Nano; 2010 Jun; 4(6):3201-8. PubMed ID: 20441213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensing Remote Bulk Defects through Resistance Noise in a Large-Area Graphene Field-Effect Transistor.
    Moulick S; Alam R; Pal AN
    ACS Appl Mater Interfaces; 2022 Nov; 14(45):51105-51112. PubMed ID: 36323003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current saturation in submicrometer graphene transistors with thin gate dielectric: experiment, simulation, and theory.
    Han SJ; Reddy D; Carpenter GD; Franklin AD; Jenkins KA
    ACS Nano; 2012 Jun; 6(6):5220-6. PubMed ID: 22582702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transfer-free batch fabrication of single layer graphene transistors.
    Levendorf MP; Ruiz-Vargas CS; Garg S; Park J
    Nano Lett; 2009 Dec; 9(12):4479-83. PubMed ID: 19860406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extremely scaled 3-dimensional multiple-gate technologies for terabit era.
    Choi YK; Kim KH; Han JW; Ryu SW; Lee H
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4126-30. PubMed ID: 18047133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzyme-polyelectrolyte multilayer assemblies on reduced graphene oxide field-effect transistors for biosensing applications.
    Piccinini E; Bliem C; Reiner-Rozman C; Battaglini F; Azzaroni O; Knoll W
    Biosens Bioelectron; 2017 Jun; 92():661-667. PubMed ID: 27836616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-kappa oxide nanoribbons as gate dielectrics for high mobility top-gated graphene transistors.
    Liao L; Bai J; Qu Y; Lin YC; Li Y; Huang Y; Duan X
    Proc Natl Acad Sci U S A; 2010 Apr; 107(15):6711-5. PubMed ID: 20308584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.