BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

472 related articles for article (PubMed ID: 31833567)

  • 21. The PIM inhibitor AZD1208 synergizes with ruxolitinib to induce apoptosis of ruxolitinib sensitive and resistant JAK2-V617F-driven cells and inhibit colony formation of primary MPN cells.
    Mazzacurati L; Lambert QT; Pradhan A; Griner LN; Huszar D; Reuther GW
    Oncotarget; 2015 Nov; 6(37):40141-57. PubMed ID: 26472029
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular pathways: Jak/STAT pathway: mutations, inhibitors, and resistance.
    Quintás-Cardama A; Verstovsek S
    Clin Cancer Res; 2013 Apr; 19(8):1933-40. PubMed ID: 23406773
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sensitivity and resistance of JAK2 inhibitors to myeloproliferative neoplasms.
    Bhagwat N; Levine RL; Koppikar P
    Int J Hematol; 2013 Jun; 97(6):695-702. PubMed ID: 23670175
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rationale for targeting the PI3K/Akt/mTOR pathway in myeloproliferative neoplasms.
    Bartalucci N; Guglielmelli P; Vannucchi AM
    Clin Lymphoma Myeloma Leuk; 2013 Sep; 13 Suppl 2():S307-9. PubMed ID: 24290217
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Targeting compensatory MEK/ERK activation increases JAK inhibitor efficacy in myeloproliferative neoplasms.
    Stivala S; Codilupi T; Brkic S; Baerenwaldt A; Ghosh N; Hao-Shen H; Dirnhofer S; Dettmer MS; Simillion C; Kaufmann BA; Chiu S; Keller M; Kleppe M; Hilpert M; Buser AS; Passweg JR; Radimerski T; Skoda RC; Levine RL; Meyer SC
    J Clin Invest; 2019 Mar; 129(4):1596-1611. PubMed ID: 30730307
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Discovery and evaluation of ZT55, a novel highly-selective tyrosine kinase inhibitor of JAK2
    Hu M; Xu C; Yang C; Zuo H; Chen C; Zhang D; Shi G; Wang W; Shi J; Zhang T
    J Exp Clin Cancer Res; 2019 Feb; 38(1):49. PubMed ID: 30717771
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Clinical Manifestations and Risk Factors for Complications of Philadelphia Chromosome-Negative Myeloproliferative Neoplasms.
    Duangnapasatit B; Rattarittamrong E; Rattanathammethee T; Hantrakool S; Chai-Adisaksopha C; Tantiworawit A; Norasetthada L
    Asian Pac J Cancer Prev; 2015; 16(12):5013-8. PubMed ID: 26163633
    [TBL] [Abstract][Full Text] [Related]  

  • 28. IL-6 stimulation of DNA replication is JAK1/2 mediated in cross-talk with hyperactivated ERK1/2 signaling.
    Subotički T; Mitrović Ajtić O; Beleslin-Čokić BB; Bjelica S; Djikić D; Diklić M; Leković D; Gotić M; Santibanez JF; Noguchi CT; Čokić VP
    Cell Biol Int; 2019 Feb; 43(2):192-206. PubMed ID: 30571852
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experimental therapeutics for patients with myeloproliferative neoplasias.
    Agrawal M; Garg RJ; Cortes J; Kantarjian H; Verstovsek S; Quintas-Cardama A
    Cancer; 2011 Feb; 117(4):662-76. PubMed ID: 20922795
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Therapy for myeloproliferative neoplasms: when, which agent, and how?
    Geyer HL; Mesa RA
    Hematology Am Soc Hematol Educ Program; 2014 Dec; 2014(1):277-86. PubMed ID: 25696867
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of JAK inhibitors in myeloproliferative neoplasms: current point of view and perspectives.
    Loscocco GG; Vannucchi AM
    Int J Hematol; 2022 May; 115(5):626-644. PubMed ID: 35352288
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Targeting myeloproliferative neoplasms with JAK inhibitors.
    Pardanani A; Tefferi A
    Curr Opin Hematol; 2011 Mar; 18(2):105-10. PubMed ID: 21245760
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reducing symptom burden in patients with myeloproliferative neoplasms in the era of Janus kinase inhibitors.
    Mesa RA; Scherber RM; Geyer HL
    Leuk Lymphoma; 2015 Jul; 56(7):1989-99. PubMed ID: 25644746
    [TBL] [Abstract][Full Text] [Related]  

  • 34. JAK2 mutations and clinical practice in myeloproliferative neoplasms.
    Tefferi A
    Cancer J; 2007; 13(6):366-71. PubMed ID: 18032973
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Myeloproliferative disorders.
    Levine RL; Gilliland DG
    Blood; 2008 Sep; 112(6):2190-8. PubMed ID: 18779404
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Myeloproliferative neoplasms 5 years after discovery of JAK2V617F: what is the impact of JAK2 inhibitor therapy?
    Tibes R; Mesa RA
    Leuk Lymphoma; 2011 Jul; 52(7):1178-87. PubMed ID: 21599574
    [TBL] [Abstract][Full Text] [Related]  

  • 37. JAK2 and MPL mutations in myeloproliferative neoplasms: discovery and science.
    Kilpivaara O; Levine RL
    Leukemia; 2008 Oct; 22(10):1813-7. PubMed ID: 18754026
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent Advances in the Use of Molecular Analyses to Inform the Diagnosis and Prognosis of Patients with Polycythaemia Vera.
    Stuckey R; Gómez-Casares MT
    Int J Mol Sci; 2021 May; 22(9):. PubMed ID: 34068690
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinase drug discovery approaches in chronic myeloproliferative disorders.
    Kumar C; Purandare AV; Lee FY; Lorenzi MV
    Oncogene; 2009 Jun; 28(24):2305-13. PubMed ID: 19421140
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Therapy with JAK2 inhibitors for myeloproliferative neoplasms.
    Santos FP; Verstovsek S
    Hematol Oncol Clin North Am; 2012 Oct; 26(5):1083-99. PubMed ID: 23009939
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.