BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 31833666)

  • 1. Construction of 3D Electronic/Ionic Conduction Networks for All-Solid-State Lithium Batteries.
    Wan H; Cai L; Han F; Mwizerwa JP; Wang C; Yao X
    Small; 2019 Dec; 15(50):e1905849. PubMed ID: 31833666
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Cai L; Wan H; Zhang Q; Mwizerwa JP; Xu X; Yao X
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):33810-33816. PubMed ID: 32662624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Energy All-Solid-State Lithium Batteries with Ultralong Cycle Life.
    Yao X; Liu D; Wang C; Long P; Peng G; Hu YS; Li H; Chen L; Xu X
    Nano Lett; 2016 Nov; 16(11):7148-7154. PubMed ID: 27766883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assembling All-Solid-State Lithium-Sulfur Batteries with Li
    Kızılaslan A; Akbulut H
    Chempluschem; 2019 Feb; 84(2):183-189. PubMed ID: 31950696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of ion-electron conduction network on FeS
    Shen C; Liu Y; Shi Y; Liu X; Jiang Y; Huang S; Zhang J; Zhao B
    J Colloid Interface Sci; 2024 Jan; 653(Pt A):85-93. PubMed ID: 37708735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amorphous Titanium Polysulfide Composites with Electronic/Ionic Conduction Networks for All-Solid-State Lithium Batteries.
    Fan W; Jiang M; Liu G; Weng W; Yang J; Yao X
    ACS Appl Mater Interfaces; 2022 Apr; 14(15):17594-17600. PubMed ID: 35389629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of All-Solid-State Batteries based on a Sulfur-Graphene Composite and Li
    Xu R; Wu Z; Zhang S; Wang X; Xia Y; Xia X; Huang X; Tu J
    Chemistry; 2017 Oct; 23(56):13950-13956. PubMed ID: 28722816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Niobium sulfide nanocomposites as cathode materials for all-solid-state lithium batteries with enhanced electrochemical performance.
    Wang N; Chang M; Xie W; Liu G; Zhang L; He H; Yao X
    Nanoscale; 2024 May; 16(18):8915-8921. PubMed ID: 38639636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co
    Shi J; Liu G; Weng W; Cai L; Zhang Q; Wu J; Xu X; Yao X
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):14079-14086. PubMed ID: 32125817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchical nanocomposites of vanadium oxide thin film anchored on graphene as high-performance cathodes in li-ion batteries.
    Li ZF; Zhang H; Liu Q; Liu Y; Stanciu L; Xie J
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):18894-900. PubMed ID: 25296182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-Dimensional LiMnPO4·Li3V2(PO4)3/C Nanocomposite as a Bicontinuous Cathode for High-Rate and Long-Life Lithium-Ion Batteries.
    Luo Y; Xu X; Zhang Y; Pi Y; Yan M; Wei Q; Tian X; Mai L
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17527-34. PubMed ID: 26196544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Core-Shell Fe
    Wan H; Mwizerwa JP; Qi X; Liu X; Xu X; Li H; Hu YS; Yao X
    ACS Nano; 2018 Mar; 12(3):2809-2817. PubMed ID: 29518320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile Hydrothermal Synthesis of VS2/Graphene Nanocomposites with Superior High-Rate Capability as Lithium-Ion Battery Cathodes.
    Fang W; Zhao H; Xie Y; Fang J; Xu J; Chen Z
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):13044-52. PubMed ID: 26016687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Performance Li-SeS
    Li X; Liang J; Luo J; Wang C; Li X; Sun Q; Li R; Zhang L; Yang R; Lu S; Huang H; Sun X
    Adv Mater; 2019 Apr; 31(17):e1808100. PubMed ID: 30873698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational Designed Mixed-Conductive Sulfur Cathodes for All-Solid-State Lithium Batteries.
    Yue J; Huang Y; Liu S; Chen J; Han F; Wang C
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36066-36071. PubMed ID: 32687320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Situ Self-Formed Nanosheet MoS
    Chang U; Lee JT; Yun JM; Lee B; Lee SW; Joh HI; Eom K; Fuller TF
    ACS Nano; 2019 Feb; 13(2):1490-1498. PubMed ID: 30580512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Performance Cathode Material of FeF
    Lu L; Li S; Li J; Lan L; Lu Y; Xu S; Huang S; Pan C; Zhao F
    Nanoscale Res Lett; 2019 Mar; 14(1):100. PubMed ID: 30877480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Performance All-Solid-State Lithium-Sulfur Battery Enabled by a Mixed-Conductive Li2S Nanocomposite.
    Han F; Yue J; Fan X; Gao T; Luo C; Ma Z; Suo L; Wang C
    Nano Lett; 2016 Jul; 16(7):4521-7. PubMed ID: 27322663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Safe High-Performance All-Solid-State Lithium-Vanadium Battery with a Freestanding V
    Zhang Y; Lai J; Gong Y; Hu Y; Liu J; Sun C; Wang ZL
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34309-34316. PubMed ID: 27998115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the Cathode Active Materials for Sulfide-Based All-Solid-State Lithium Batteries with High Energy Density.
    Hong SB; Lee YJ; Lee HJ; Sim HT; Lee H; Lee YM; Kim DW
    Small; 2024 Mar; 20(9):e2304747. PubMed ID: 37847909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.