These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 31833787)

  • 1. Rat liver epigenome programing by perinatal exposure to 2,2',4'4'-tetrabromodiphenyl ether.
    Suvorov A; Naumov V; Shtratnikova V; Logacheva M; Shershebnev A; Wu H; Gerasimov E; Zheludkevich A; Pilsner JR; Sergeyev O
    Epigenomics; 2020 Feb; 12(3):235-249. PubMed ID: 31833787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perinatal exposure to low dose 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) alters sperm DNA methylation in adult rats.
    Suvorov A; Shershebnev A; Wu H; Medvedeva Y; Sergeyev O; Pilsner JR
    Reprod Toxicol; 2018 Jan; 75():136-143. PubMed ID: 29107676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perinatal exposure to 2,2',4'4' -Tetrabromodiphenyl ether induces testicular toxicity in adult rats.
    Khalil A; Parker M; Brown SE; Cevik SE; Guo LW; Jensen J; Olmsted A; Portman D; Wu H; Suvorov A
    Toxicology; 2017 Aug; 389():21-30. PubMed ID: 28712647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global gene expression analysis in the livers of rat offspring perinatally exposed to low doses of 2,2',4,4'-tetrabromodiphenyl ether.
    Suvorov A; Takser L
    Environ Health Perspect; 2010 Jan; 118(1):97-102. PubMed ID: 20056577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental Exposure to 2,2',4,4'-Tetrabromodiphenyl Ether Permanently Alters Blood-Liver Balance of Lipids in Male Mice.
    Khalil A; Cevik SE; Hung S; Kolla S; Roy MA; Suvorov A
    Front Endocrinol (Lausanne); 2018; 9():548. PubMed ID: 30294300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative metabolism of BDE-47, BDE-99, and HBCDs by cat liver microsomes: Implications of cats as sentinel species to monitor human exposure to environmental pollutants.
    Zheng X; Erratico C; Luo X; Mai B; Covaci A
    Chemosphere; 2016 May; 151():30-6. PubMed ID: 26923239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hepatic microsomal metabolism of BDE-47 and BDE-99 by lesser snow geese and Japanese quail.
    Krieger LK; Szeitz A; Bandiera SM
    Chemosphere; 2017 Sep; 182():559-566. PubMed ID: 28525869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hepatic Lipid Accumulation and Nrf2 Expression following Perinatal and Peripubertal Exposure to Bisphenol A in a Mouse Model of Nonalcoholic Liver Disease.
    Shimpi PC; More VR; Paranjpe M; Donepudi AC; Goodrich JM; Dolinoy DC; Rubin B; Slitt AL
    Environ Health Perspect; 2017 Aug; 125(8):087005. PubMed ID: 28796629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of hepatic biotransformation of polybrominated diphenyl ethers in the polar bear (Ursus maritimus).
    Krieger LK; Szeitz A; Bandiera SM
    Chemosphere; 2016 Mar; 146():555-64. PubMed ID: 26745384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative oxidative metabolism of BDE-47 and BDE-99 by rat hepatic microsomes.
    Erratico CA; Moffatt SC; Bandiera SM
    Toxicol Sci; 2011 Sep; 123(1):37-47. PubMed ID: 21673328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Berberine improves glucogenesis and lipid metabolism in nonalcoholic fatty liver disease.
    Zhao L; Cang Z; Sun H; Nie X; Wang N; Lu Y
    BMC Endocr Disord; 2017 Feb; 17(1):13. PubMed ID: 28241817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of hydroxylated metabolites in 2,2',4,4'-tetrabromodiphenyl ether exposed rats.
    Marsh G; Athanasiadou M; Athanassiadis I; Sandholm A
    Chemosphere; 2006 Apr; 63(4):690-7. PubMed ID: 16213553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chronic exposure to tetrabromodiphenyl ether (BDE-47) aggravates hepatic steatosis and liver fibrosis in diet-induced obese mice.
    Yang C; Zhu L; Kang Q; Lee HK; Li D; Chung ACK; Cai Z
    J Hazard Mater; 2019 Oct; 378():120766. PubMed ID: 31226595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histopathological effects of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in the gills, intestine and liver of turbot (Psetta maxima).
    Barja-Fernández S; Míguez JM; Alvarez-Otero R
    Ecotoxicol Environ Saf; 2013 Sep; 95():60-8. PubMed ID: 23816362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does 2,2',4,4'-tetrabromodiphenyl ether interact directly with thyroid receptor?
    Suvorov A; Bissonnette C; Takser L; Langlois MF
    J Appl Toxicol; 2011 Mar; 31(2):179-84. PubMed ID: 20737425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Interactions between Gut Microbiome and Host Drug-Processing Genes Modify the Hepatic Metabolism of the Environmental Chemicals Polybrominated Diphenyl Ethers.
    Li CY; Lee S; Cade S; Kuo LJ; Schultz IR; Bhatt DK; Prasad B; Bammler TK; Cui JY
    Drug Metab Dispos; 2017 Nov; 45(11):1197-1214. PubMed ID: 28864748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polybrominated Diphenyl Ether (PBDE)-Induced Suppression of Phosphoenolpyruvate Carboxykinase (PEPCK) Decreases Hepatic Glyceroneogenesis and Disrupts Hepatic Lipid Homeostasis.
    Cowens KR; Simpson S; Thomas WK; Carey GB
    J Toxicol Environ Health A; 2015; 78(23-24):1437-49. PubMed ID: 26692069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rno-miR-224-5p contributes to 2,2',4,4'-tetrabromodiphenyl ether-induced low triiodothyronine in rats by targeting deiodinases.
    Wang C; Zhu J; Zhang Z; Chen H; Ji M; Chen C; Hu Y; Yu Y; Xia R; Shen J; Gong X; Wang SL
    Chemosphere; 2020 May; 246():125774. PubMed ID: 31901531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of polybrominated diphenyl ether toxicity in Wistar Han rats and use of liver microarray data for predicting disease susceptibilities.
    Dunnick JK; Brix A; Cunny H; Vallant M; Shockley KR
    Toxicol Pathol; 2012; 40(1):93-106. PubMed ID: 22267650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) induces wide metabolic changes including attenuated mitochondrial function and enhanced glycolysis in PC12 cells.
    He H; Shi X; Lawrence A; Hrovat J; Turner C; Cui JY; Gu H
    Ecotoxicol Environ Saf; 2020 Sep; 201():110849. PubMed ID: 32559690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.