BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

707 related articles for article (PubMed ID: 31834465)

  • 21. Chitosan-stabilized selenium nanoparticles alleviate cardio-hepatic damage in type 2 diabetes mellitus model via regulation of caspase, Bax/Bcl-2, and Fas/FasL-pathway.
    Mohamed AA; Khater SI; Hamed Arisha A; Metwally MMM; Mostafa-Hedeab G; El-Shetry ES
    Gene; 2021 Feb; 768():145288. PubMed ID: 33181259
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Liraglutide protects non-alcoholic fatty liver disease via inhibiting NLRP3 inflammasome activation in a mouse model induced by high-fat diet.
    Zhu W; Feng PP; He K; Li SW; Gong JP
    Biochem Biophys Res Commun; 2018 Oct; 505(2):523-529. PubMed ID: 30269815
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Alpinetin improved high fat diet-induced non-alcoholic fatty liver disease (NAFLD) through improving oxidative stress, inflammatory response and lipid metabolism.
    Zhou Y; Ding YL; Zhang JL; Zhang P; Wang JQ; Li ZH
    Biomed Pharmacother; 2018 Jan; 97():1397-1408. PubMed ID: 29156529
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carnosic acid protects mice from high-fat diet-induced NAFLD by regulating MARCKS.
    Song HM; Li X; Liu YY; Lu WP; Cui ZH; Zhou L; Yao D; Zhang HM
    Int J Mol Med; 2018 Jul; 42(1):193-207. PubMed ID: 29620148
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Epigallocatechin-3-gallate ameliorates glucolipid metabolism and oxidative stress in type 2 diabetic rats.
    Li W; Zhu C; Liu T; Zhang W; Liu X; Li P; Zhu T
    Diab Vasc Dis Res; 2020; 17(6):1479164120966998. PubMed ID: 33280417
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Liraglutide Improves Non-Alcoholic Fatty Liver Disease In Diabetic Mice By Modulating Inflammatory Signaling Pathways.
    Luo Y; Yang P; Li Z; Luo Y; Shen J; Li R; Zheng H; Liang Y; Xia N
    Drug Des Devel Ther; 2019; 13():4065-4074. PubMed ID: 31819375
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of NLRP3-Inflammasome/Caspase-1/Galectin-3 Pathway on Atrial Remodeling in Diabetic Rabbits.
    Wu X; Liu Y; Tu D; Liu X; Niu S; Suo Y; Liu T; Li G; Liu C
    J Cardiovasc Transl Res; 2020 Oct; 13(5):731-740. PubMed ID: 32048199
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cranberry Attenuates Progression of Non-alcoholic Fatty Liver Disease Induced by High-Fat Diet in Mice.
    Shimizu K; Ono M; Imoto A; Nagayama H; Tetsumura N; Terada T; Tomita K; Nishinaka T
    Biol Pharm Bull; 2019; 42(8):1295-1302. PubMed ID: 31366865
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A pharmacological inhibitor of NLRP3 inflammasome prevents non-alcoholic fatty liver disease in a mouse model induced by high fat diet.
    Yang G; Lee HE; Lee JY
    Sci Rep; 2016 Apr; 6():24399. PubMed ID: 27075683
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The hepatoprotective effects of n3-polyunsaturated fatty acids against non-alcoholic fatty liver disease in diabetic rats through the FOXO1/PPARα/GABARAPL1 signalling pathway.
    Ramadan NM; Elmasry K; Elsayed HRH; El-Mesery A; Eraky SM
    Life Sci; 2022 Dec; 311(Pt A):121145. PubMed ID: 36336129
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of XIAP on high fat diet-induced hepatic steatosis: a mechanism involving NLRP3 inflammasome and oxidative stress.
    Zilu S; Qian H; Haibin W; Chenxu G; Deshuai L; Qiang L; Linfeng H; Jun T; Minxuan X
    Aging (Albany NY); 2019 Dec; 11(24):12177-12201. PubMed ID: 31841118
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Trilobatin alleviates non-alcoholic fatty liver disease in high-fat diet plus streptozotocin-induced diabetic mice by suppressing NLRP3 inflammasome activation.
    Zhang ZT; He WJ; Deng SM; Xu SH; Zeng X; Qian ZM; Chen ZQ; Wang SM; Tang D
    Eur J Pharmacol; 2022 Oct; 933():175291. PubMed ID: 36150533
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chinese herbal medicine mixture 919 syrup alleviates nonalcoholic fatty liver disease in rats by inhibiting the NF-κB pathway.
    Chen M; Xing J; Pan D; Peng X; Gao P
    Biomed Pharmacother; 2020 Aug; 128():110286. PubMed ID: 32521450
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ameliorative effect of nicorandil on high fat diet induced non-alcoholic fatty liver disease in rats.
    Elshazly SM
    Eur J Pharmacol; 2015 Feb; 748():123-32. PubMed ID: 25542756
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PTUPB ameliorates high-fat diet-induced non-alcoholic fatty liver disease via inhibiting NLRP3 inflammasome activation in mice.
    Sun CC; Zhang CY; Duan JX; Guan XX; Yang HH; Jiang HL; Hammock BD; Hwang SH; Zhou Y; Guan CX; Liu SK; Zhang J
    Biochem Biophys Res Commun; 2020 Mar; 523(4):1020-1026. PubMed ID: 31973813
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mitochondrial dysfunction in high-fat diet-induced nonalcoholic fatty liver disease: The alleviating effect and its mechanism of Polygonatum kingianum.
    Yang XX; Wang X; Shi TT; Dong JC; Li FJ; Zeng LX; Yang M; Gu W; Li JP; Yu J
    Biomed Pharmacother; 2019 Sep; 117():109083. PubMed ID: 31387169
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reactive oxygen species-induced TXNIP drives fructose-mediated hepatic inflammation and lipid accumulation through NLRP3 inflammasome activation.
    Zhang X; Zhang JH; Chen XY; Hu QH; Wang MX; Jin R; Zhang QY; Wang W; Wang R; Kang LL; Li JS; Li M; Pan Y; Huang JJ; Kong LD
    Antioxid Redox Signal; 2015 Apr; 22(10):848-70. PubMed ID: 25602171
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of eicosapentaenoic acid on hepatic dyslipidemia and oxidative stress in high fat diet-induced steatosis.
    Hirotani Y; Ozaki N; Tsuji Y; Urashima Y; Myotoku M
    Int J Food Sci Nutr; 2015; 66(5):569-73. PubMed ID: 26017323
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Caffeine affects HFD-induced hepatic steatosis by multifactorial intervention.
    Helal MG; Ayoub SE; Elkashefand WF; Ibrahim TM
    Hum Exp Toxicol; 2018 Sep; 37(9):983-990. PubMed ID: 29249184
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Can nitric oxide-generating compounds improve the oxidative stress response in experimentally diabetic rats?
    Mohamadin AM; Hammad LN; El-Bab MF; Gawad HS
    Clin Exp Pharmacol Physiol; 2007 Jul; 34(7):586-93. PubMed ID: 17581213
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 36.