These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 31834483)

  • 1. First principles investigation on armchair zinc oxide nanoribbons as uric acid sensors.
    Singh P; Randhawa DKK; Tarun ; Choudhary BC; Walia GK; Kaur N
    J Mol Model; 2019 Dec; 26(1):4. PubMed ID: 31834483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of ZnO dimers on the thermoelectric performance of armchair graphene nanoribbons.
    Ajeel FN; Ahmed AB
    J Mol Model; 2023 Apr; 29(5):145. PubMed ID: 37067639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of uric acid adsorption on armchair silicene nanoribbons: a DFT study.
    Tarun T; Randhawa DKK; Singh P; Choudhary BC; Walia GK; Kaur N
    J Mol Model; 2020 Feb; 26(3):63. PubMed ID: 32108912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical study of nitrogen, boron, and co-doped (B, N) armchair graphene nanoribbons.
    Javan M; Jorjani R; Soltani AR
    J Mol Model; 2020 Mar; 26(4):64. PubMed ID: 32125548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic structures and transport properties of SnS-SnSe nanoribbon lateral heterostructures.
    Yang Y; Zhou Y; Luo Z; Guo Y; Rao D; Yan X
    Phys Chem Chem Phys; 2019 May; 21(18):9296-9301. PubMed ID: 30964129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of substitutional defects on resonant tunneling diodes based on armchair graphene and boron nitride nanoribbons lateral heterojunctions.
    Sanaeepur M
    Beilstein J Nanotechnol; 2020; 11():688-694. PubMed ID: 32395399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrogen-doped zinc oxide nanoribbons for potential resonant tunneling diode applications.
    Krishna MS; Singh S; Kaushik BK
    Phys Chem Chem Phys; 2023 Jun; 25(25):16889-16895. PubMed ID: 37318447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic structures and transport properties of a MoS
    Yang Z; Pan J; Liu Q; Wu N; Hu M; Ouyang F
    Phys Chem Chem Phys; 2017 Jan; 19(2):1303-1310. PubMed ID: 27966699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Density-functional study of hydrogen cyanide adsorption on silicene nanoribbons.
    Walia GK; Randhawa DKK
    J Mol Model; 2018 Aug; 24(9):242. PubMed ID: 30121785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetism and perfect spin filtering in pristine MgCl
    Vasconcelos R; Paura ENC; Machado de Macedo LG; Gargano R
    Phys Chem Chem Phys; 2022 Feb; 24(5):3370-3378. PubMed ID: 35067691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultranarrow heterojunctions of armchair-graphene nanoribbons as resonant-tunnelling devices.
    Sánchez-Ochoa F; Zhang J; Du Y; Huang Z; Canto G; Springborg M; Cocoletzi GH
    Phys Chem Chem Phys; 2019 Dec; 21(45):24867-24875. PubMed ID: 31517350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic Structure and I-V Characteristics of InSe Nanoribbons.
    Yao AL; Wang XF; Liu YS; Sun YN
    Nanoscale Res Lett; 2018 Apr; 13(1):107. PubMed ID: 29671093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption and dissociation of sulfur-based toxic gas molecules on silicene nanoribbons: a quest for high-performance gas sensors and catalysts.
    Walia GK; Randhawa DKK
    J Mol Model; 2018 Mar; 24(4):94. PubMed ID: 29549500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the enhancement of lung cancer sensing: the effect of edge halogenation in armchair stanene nanoribbons.
    Mashhadbani M; Faizabadi E
    Phys Chem Chem Phys; 2024 May; 26(17):13335-13349. PubMed ID: 38639922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orientation dependent thermal conductance in single-layer MoS2.
    Jiang JW; Zhuang X; Rabczuk T
    Sci Rep; 2013; 3():2209. PubMed ID: 23860436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface decoration of phosphorene nanoribbons with 4d transition metal atoms for spintronics.
    Fu XX; Niu Y; Hao ZW; Dong MM; Wang CK
    Phys Chem Chem Phys; 2020 Jul; 22(28):16063-16071. PubMed ID: 32633289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic structures, transport properties, and optical absorption of bilayer blue phosphorene nanoribbons.
    Gong LJ; Shi HL; Yang J; Han QZ; Ren YH; He SY; Zhao YH; Jiang ZT
    Phys Chem Chem Phys; 2023 Aug; 25(33):22487-22496. PubMed ID: 37581353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphenylene nanoribbons: electronic, optical and thermoelectric properties from first-principles calculations.
    Meftakhutdinov RM; Sibatov RT; Kochaev AI
    J Phys Condens Matter; 2020 May; 32(34):. PubMed ID: 32303006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Negative differential resistance in armchair silicene nanoribbons.
    Manjanath A; Roy A; Samanta A; Singh AK
    Nanotechnology; 2017 Jul; 28(27):275402. PubMed ID: 28557802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defective ZrSe
    Kheirabadi SJ; Behzadi F; Gity F; Hurley PK; Khorrami SK; Behroozi M; Sanaee M; Ansari L
    J Phys Condens Matter; 2023 Dec; 36(13):. PubMed ID: 38064742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.