These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 31834778)

  • 41. Photoinduced loading of electron-rich Cu single atoms by moderate coordination for hydrogen evolution.
    Fu W; Wan J; Zhang H; Li J; Chen W; Li Y; Guo Z; Wang Y
    Nat Commun; 2022 Sep; 13(1):5496. PubMed ID: 36127356
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Engineering additional edge sites on molybdenum dichalcogenides toward accelerated alkaline hydrogen evolution kinetics.
    Zhou Q; Zhao G; Rui K; Chen Y; Xu X; Dou SX; Sun W
    Nanoscale; 2019 Jan; 11(2):717-724. PubMed ID: 30565626
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ultra-Thin SnS
    Yu Y; Xu J; Zhang J; Li F; Fu J; Li C; An C
    Nanomaterials (Basel); 2020 Nov; 10(12):. PubMed ID: 33255608
    [TBL] [Abstract][Full Text] [Related]  

  • 44. NiPS
    Xue S; Chen L; Liu Z; Cheng HM; Ren W
    ACS Nano; 2018 Jun; 12(6):5297-5305. PubMed ID: 29901983
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electrodeposited Mo
    Du K; Zheng L; Wang T; Zhuo J; Zhu Z; Shao Y; Li M
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18675-18681. PubMed ID: 28524651
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Two-dimensional bimetallic phosphide ultrathin nanosheets as non-noble electrocatalysts for a highly efficient oxygen evolution reaction.
    Jiang M; Li J; Li J; Zhao Y; Pan L; Cao Q; Wang D; Du Y
    Nanoscale; 2019 May; 11(19):9654-9660. PubMed ID: 31065631
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Metal dichalcogenides monolayers: novel catalysts for electrochemical hydrogen production.
    Pan H
    Sci Rep; 2014 Jun; 4():5348. PubMed ID: 24967679
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synthesis of single crystalline two-dimensional transition-metal phosphides via a salt-templating method.
    Li T; Jin H; Liang Z; Huang L; Lu Y; Yu H; Hu Z; Wu J; Xia BY; Feng G; Zhou J
    Nanoscale; 2018 Apr; 10(15):6844-6849. PubMed ID: 29616268
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction.
    Mahmood J; Li F; Jung SM; Okyay MS; Ahmad I; Kim SJ; Park N; Jeong HY; Baek JB
    Nat Nanotechnol; 2017 May; 12(5):441-446. PubMed ID: 28192390
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rational strain engineering of single-atom ruthenium on nanoporous MoS
    Jiang K; Luo M; Liu Z; Peng M; Chen D; Lu YR; Chan TS; de Groot FMF; Tan Y
    Nat Commun; 2021 Mar; 12(1):1687. PubMed ID: 33727537
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Engineering MoSe
    Vikraman D; Hussain S; Patil SA; Truong L; Arbab AA; Jeong SH; Chun SH; Jung J; Kim HS
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):5061-5072. PubMed ID: 33470112
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pore Surface Engineering of Covalent Triazine Frameworks@MoS
    Qiao S; Zhang B; Li Q; Li Z; Wang W; Zhao J; Zhang X; Hu Y
    ChemSusChem; 2019 Nov; 12(22):5032-5040. PubMed ID: 31552705
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Transition-Metal Phosphide-Carbon Nanosheet Composites Derived from Two-Dimensional Metal-Organic Frameworks for Highly Efficient Electrocatalytic Water-Splitting.
    Zhai M; Wang F; Du H
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40171-40179. PubMed ID: 29098858
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Interfacial electronic structure engineering on molybdenum sulfide for robust dual-pH hydrogen evolution.
    Liu M; Wang JA; Klysubun W; Wang GG; Sattayaporn S; Li F; Cai YW; Zhang F; Yu J; Yang Y
    Nat Commun; 2021 Sep; 12(1):5260. PubMed ID: 34489450
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution.
    Yang J; Mohmad AR; Wang Y; Fullon R; Song X; Zhao F; Bozkurt I; Augustin M; Santos EJG; Shin HS; Zhang W; Voiry D; Jeong HY; Chhowalla M
    Nat Mater; 2019 Dec; 18(12):1309-1314. PubMed ID: 31451781
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multimetal Borides Nanochains as Efficient Electrocatalysts for Overall Water Splitting.
    Li Y; Huang B; Sun Y; Luo M; Yang Y; Qin Y; Wang L; Li C; Lv F; Zhang W; Guo S
    Small; 2019 Jan; 15(1):e1804212. PubMed ID: 30515971
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Amorphous nickel-cobalt complexes hybridized with 1T-phase molybdenum disulfide via hydrazine-induced phase transformation for water splitting.
    Li H; Chen S; Jia X; Xu B; Lin H; Yang H; Song L; Wang X
    Nat Commun; 2017 May; 8():15377. PubMed ID: 28485395
    [TBL] [Abstract][Full Text] [Related]  

  • 58. MOF-Derived Noble Metal Free Catalysts for Electrochemical Water Splitting.
    Tao Z; Wang T; Wang X; Zheng J; Li X
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35390-35397. PubMed ID: 27966855
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Regulating the electron density of dual transition metal sulfide heterostructures for highly efficient hydrogen evolution in alkaline electrolytes.
    Yang M; Jiang Y; Liu S; Zhang M; Guo Q; Shen W; He R; Su W; Li M
    Nanoscale; 2019 Aug; 11(29):14016-14023. PubMed ID: 31309960
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electrochemical activated molybdenum oxides based multiphase heterostructures with high hydrogen evolution activity in alkaline condition.
    Xu C; Chang P; Liu Z; Guan L; Wang X; Tao J
    Nanotechnology; 2023 Aug; 34(46):. PubMed ID: 37579742
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.