These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 31834783)
1. Engineered BRET-Based Biologic Light Sources Enable Spatiotemporal Control over Diverse Optogenetic Systems. Parag-Sharma K; O'Banion CP; Henry EC; Musicant AM; Cleveland JL; Lawrence DS; Amelio AL ACS Synth Biol; 2020 Jan; 9(1):1-9. PubMed ID: 31834783 [TBL] [Abstract][Full Text] [Related]
2. Nanoluciferase signal brightness using furimazine substrates opens bioluminescence resonance energy transfer to widefield microscopy. Kim J; Grailhe R Cytometry A; 2016 Aug; 89(8):742-6. PubMed ID: 27144967 [TBL] [Abstract][Full Text] [Related]
3. Fluorophore-NanoLuc BRET Reporters Enable Sensitive In Vivo Optical Imaging and Flow Cytometry for Monitoring Tumorigenesis. Schaub FX; Reza MS; Flaveny CA; Li W; Musicant AM; Hoxha S; Guo M; Cleveland JL; Amelio AL Cancer Res; 2015 Dec; 75(23):5023-33. PubMed ID: 26424696 [TBL] [Abstract][Full Text] [Related]
4. Coupling optogenetic stimulation with NanoLuc-based luminescence (BRET) Ca Yang J; Cumberbatch D; Centanni S; Shi SQ; Winder D; Webb D; Johnson CH Nat Commun; 2016 Oct; 7():13268. PubMed ID: 27786307 [TBL] [Abstract][Full Text] [Related]
5. Bioluminescence resonance energy transfer-based imaging of protein-protein interactions in living cells. Kobayashi H; Picard LP; Schönegge AM; Bouvier M Nat Protoc; 2019 Apr; 14(4):1084-1107. PubMed ID: 30911173 [TBL] [Abstract][Full Text] [Related]
6. A red-shifted Bioluminescence Resonance Energy Transfer (BRET) biosensing system for rapid measurement of plasmin activity in human plasma. Weihs F; Peh A; Dacres H Anal Chim Acta; 2020 Mar; 1102():99-108. PubMed ID: 32044001 [TBL] [Abstract][Full Text] [Related]
7. BRET: NanoLuc-Based Bioluminescence Resonance Energy Transfer Platform to Monitor Protein-Protein Interactions in Live Cells. Mo XL; Fu H Methods Mol Biol; 2016; 1439():263-71. PubMed ID: 27317001 [TBL] [Abstract][Full Text] [Related]
8. Ligand-activated BRET9 imaging for measuring protein-protein interactions in living mice. Bae Kim S; Fujii R; Natarajan A; Massoud TF; Paulmurugan R Chem Commun (Camb); 2019 Dec; 56(2):281-284. PubMed ID: 31807738 [TBL] [Abstract][Full Text] [Related]
9. Ratiometric Bioluminescent Sensor Proteins Based on Intramolecular Split Luciferase Complementation. Ni Y; Arts R; Merkx M ACS Sens; 2019 Jan; 4(1):20-25. PubMed ID: 30525479 [TBL] [Abstract][Full Text] [Related]
10. Use of BRET to Study Protein-Protein Interactions In Vitro and In Vivo. Dimri S; Basu S; De A Methods Mol Biol; 2016; 1443():57-78. PubMed ID: 27246334 [TBL] [Abstract][Full Text] [Related]
11. Monitoring Ligand-Activated Protein-Protein Interactions Using Bioluminescent Resonance Energy Transfer (BRET) Assay. Coriano C; Powell E; Xu W Methods Mol Biol; 2016; 1473():3-15. PubMed ID: 27518618 [TBL] [Abstract][Full Text] [Related]
12. GPCR oligomerization analysis by means of BRET and dFRAP. Ciruela F; Fernández-Dueñas V Methods Mol Biol; 2015; 1272():133-41. PubMed ID: 25563182 [TBL] [Abstract][Full Text] [Related]
13. Expanded palette of Nano-lanterns for real-time multicolor luminescence imaging. Takai A; Nakano M; Saito K; Haruno R; Watanabe TM; Ohyanagi T; Jin T; Okada Y; Nagai T Proc Natl Acad Sci U S A; 2015 Apr; 112(14):4352-6. PubMed ID: 25831507 [TBL] [Abstract][Full Text] [Related]
14. Use of hGluc/tdTomato pair for sensitive BRET sensing of protease with high solution media tolerance. Li F; Yu J; Zhang Z; Cui Z; Wang D; Wei H; Zhang XE Talanta; 2013 May; 109():141-6. PubMed ID: 23618151 [TBL] [Abstract][Full Text] [Related]
15. Integration of Nanomaterials and Bioluminescence Resonance Energy Transfer Techniques for Sensing Biomolecules. Hwang E; Song J; Zhang J Biosensors (Basel); 2019 Mar; 9(1):. PubMed ID: 30884844 [TBL] [Abstract][Full Text] [Related]
16. Bioluminescence Resonance Energy Transfer (BRET)-Mediated Protein Release from Self-Illuminating Photoresponsive Biomaterials. Rapp TL; Kopyeva I; Adhikari A; DeForest CA J Am Chem Soc; 2024 Sep; 146(37):25397-25402. PubMed ID: 39250821 [TBL] [Abstract][Full Text] [Related]
17. Advances in optogenetic regulation of gene expression in mammalian cells using cryptochrome 2 (CRY2). Hernández-Candia CN; Wysoczynski CL; Tucker CL Methods; 2019 Jul; 164-165():81-90. PubMed ID: 30905749 [TBL] [Abstract][Full Text] [Related]
18. Luciferase-Rose Bengal conjugates for singlet oxygen generation by bioluminescence resonance energy transfer. Kim S; Jo H; Jeon M; Choi MG; Hahn SK; Yun SH Chem Commun (Camb); 2017 Apr; 53(33):4569-4572. PubMed ID: 28387393 [TBL] [Abstract][Full Text] [Related]
19. Effect of enhanced Renilla luciferase and fluorescent protein variants on the Förster distance of Bioluminescence resonance energy transfer (BRET). Dacres H; Michie M; Wang J; Pfleger KD; Trowell SC Biochem Biophys Res Commun; 2012 Aug; 425(3):625-9. PubMed ID: 22877756 [TBL] [Abstract][Full Text] [Related]
20. Measuring NLR Oligomerization III: Detection of NLRP3 Complex by Bioluminescence Resonance Energy Transfer. Martín-Sánchez F; Compan V; Pelegrín P Methods Mol Biol; 2016; 1417():159-68. PubMed ID: 27221488 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]