BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 31834783)

  • 1. Engineered BRET-Based Biologic Light Sources Enable Spatiotemporal Control over Diverse Optogenetic Systems.
    Parag-Sharma K; O'Banion CP; Henry EC; Musicant AM; Cleveland JL; Lawrence DS; Amelio AL
    ACS Synth Biol; 2020 Jan; 9(1):1-9. PubMed ID: 31834783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoluciferase signal brightness using furimazine substrates opens bioluminescence resonance energy transfer to widefield microscopy.
    Kim J; Grailhe R
    Cytometry A; 2016 Aug; 89(8):742-6. PubMed ID: 27144967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorophore-NanoLuc BRET Reporters Enable Sensitive In Vivo Optical Imaging and Flow Cytometry for Monitoring Tumorigenesis.
    Schaub FX; Reza MS; Flaveny CA; Li W; Musicant AM; Hoxha S; Guo M; Cleveland JL; Amelio AL
    Cancer Res; 2015 Dec; 75(23):5023-33. PubMed ID: 26424696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling optogenetic stimulation with NanoLuc-based luminescence (BRET) Ca
    Yang J; Cumberbatch D; Centanni S; Shi SQ; Winder D; Webb D; Johnson CH
    Nat Commun; 2016 Oct; 7():13268. PubMed ID: 27786307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioluminescence resonance energy transfer-based imaging of protein-protein interactions in living cells.
    Kobayashi H; Picard LP; Schönegge AM; Bouvier M
    Nat Protoc; 2019 Apr; 14(4):1084-1107. PubMed ID: 30911173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A red-shifted Bioluminescence Resonance Energy Transfer (BRET) biosensing system for rapid measurement of plasmin activity in human plasma.
    Weihs F; Peh A; Dacres H
    Anal Chim Acta; 2020 Mar; 1102():99-108. PubMed ID: 32044001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BRET: NanoLuc-Based Bioluminescence Resonance Energy Transfer Platform to Monitor Protein-Protein Interactions in Live Cells.
    Mo XL; Fu H
    Methods Mol Biol; 2016; 1439():263-71. PubMed ID: 27317001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand-activated BRET9 imaging for measuring protein-protein interactions in living mice.
    Bae Kim S; Fujii R; Natarajan A; Massoud TF; Paulmurugan R
    Chem Commun (Camb); 2019 Dec; 56(2):281-284. PubMed ID: 31807738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ratiometric Bioluminescent Sensor Proteins Based on Intramolecular Split Luciferase Complementation.
    Ni Y; Arts R; Merkx M
    ACS Sens; 2019 Jan; 4(1):20-25. PubMed ID: 30525479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of BRET to Study Protein-Protein Interactions In Vitro and In Vivo.
    Dimri S; Basu S; De A
    Methods Mol Biol; 2016; 1443():57-78. PubMed ID: 27246334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring Ligand-Activated Protein-Protein Interactions Using Bioluminescent Resonance Energy Transfer (BRET) Assay.
    Coriano C; Powell E; Xu W
    Methods Mol Biol; 2016; 1473():3-15. PubMed ID: 27518618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GPCR oligomerization analysis by means of BRET and dFRAP.
    Ciruela F; Fernández-Dueñas V
    Methods Mol Biol; 2015; 1272():133-41. PubMed ID: 25563182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expanded palette of Nano-lanterns for real-time multicolor luminescence imaging.
    Takai A; Nakano M; Saito K; Haruno R; Watanabe TM; Ohyanagi T; Jin T; Okada Y; Nagai T
    Proc Natl Acad Sci U S A; 2015 Apr; 112(14):4352-6. PubMed ID: 25831507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of hGluc/tdTomato pair for sensitive BRET sensing of protease with high solution media tolerance.
    Li F; Yu J; Zhang Z; Cui Z; Wang D; Wei H; Zhang XE
    Talanta; 2013 May; 109():141-6. PubMed ID: 23618151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of Nanomaterials and Bioluminescence Resonance Energy Transfer Techniques for Sensing Biomolecules.
    Hwang E; Song J; Zhang J
    Biosensors (Basel); 2019 Mar; 9(1):. PubMed ID: 30884844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in optogenetic regulation of gene expression in mammalian cells using cryptochrome 2 (CRY2).
    Hernández-Candia CN; Wysoczynski CL; Tucker CL
    Methods; 2019 Jul; 164-165():81-90. PubMed ID: 30905749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Luciferase-Rose Bengal conjugates for singlet oxygen generation by bioluminescence resonance energy transfer.
    Kim S; Jo H; Jeon M; Choi MG; Hahn SK; Yun SH
    Chem Commun (Camb); 2017 Apr; 53(33):4569-4572. PubMed ID: 28387393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of enhanced Renilla luciferase and fluorescent protein variants on the Förster distance of Bioluminescence resonance energy transfer (BRET).
    Dacres H; Michie M; Wang J; Pfleger KD; Trowell SC
    Biochem Biophys Res Commun; 2012 Aug; 425(3):625-9. PubMed ID: 22877756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring NLR Oligomerization III: Detection of NLRP3 Complex by Bioluminescence Resonance Energy Transfer.
    Martín-Sánchez F; Compan V; Pelegrín P
    Methods Mol Biol; 2016; 1417():159-68. PubMed ID: 27221488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Death Mechanism of Breast Adenocarcinoma Cells Caused by BRET-Induced Cytotoxicity of miniSOG Depends on the Intracellular Localization of the NanoLuc-miniSOG Fusion Protein.
    Shramova EI; Proshkina GM; Deyev SM; Petrov RV
    Dokl Biochem Biophys; 2018 Sep; 482(1):288-291. PubMed ID: 30397895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.