Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1431 related articles for article (PubMed ID: 31834910)

  • 1. An investigation of machine learning methods in delta-radiomics feature analysis.
    Chang Y; Lafata K; Sun W; Wang C; Chang Z; Kirkpatrick JP; Yin FF
    PLoS One; 2019; 14(12):e0226348. PubMed ID: 31834910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Treatment response prediction using MRI-based pre-, post-, and delta-radiomic features and machine learning algorithms in colorectal cancer.
    Shayesteh S; Nazari M; Salahshour A; Sandoughdaran S; Hajianfar G; Khateri M; Yaghobi Joybari A; Jozian F; Fatehi Feyzabad SH; Arabi H; Shiri I; Zaidi H
    Med Phys; 2021 Jul; 48(7):3691-3701. PubMed ID: 33894058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiomics-Based Machine Learning Classification for Glioma Grading Using Diffusion- and Perfusion-Weighted Magnetic Resonance Imaging.
    Hashido T; Saito S; Ishida T
    J Comput Assist Tomogr; 2021 Jul-Aug 01; 45(4):606-613. PubMed ID: 34270479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiogenomics of lower-grade gliomas: machine learning-based MRI texture analysis for predicting 1p/19q codeletion status.
    Kocak B; Durmaz ES; Ates E; Sel I; Turgut Gunes S; Kaya OK; Zeynalova A; Kilickesmez O
    Eur Radiol; 2020 Feb; 30(2):877-886. PubMed ID: 31691122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning-based radiomic models to predict intensity-modulated radiation therapy response, Gleason score and stage in prostate cancer.
    Abdollahi H; Mofid B; Shiri I; Razzaghdoust A; Saadipoor A; Mahdavi A; Galandooz HM; Mahdavi SR
    Radiol Med; 2019 Jun; 124(6):555-567. PubMed ID: 30607868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Primary central nervous system lymphoma and atypical glioblastoma: Differentiation using radiomics approach.
    Suh HB; Choi YS; Bae S; Ahn SS; Chang JH; Kang SG; Kim EH; Kim SH; Lee SK
    Eur Radiol; 2018 Sep; 28(9):3832-3839. PubMed ID: 29626238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leveraging radiomics and machine learning to differentiate radiation necrosis from recurrence in patients with brain metastases.
    Basree MM; Li C; Um H; Bui AH; Liu M; Ahmed A; Tiwari P; McMillan AB; Baschnagel AM
    J Neurooncol; 2024 Jun; 168(2):307-316. PubMed ID: 38689115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiomic machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma.
    Zhang B; He X; Ouyang F; Gu D; Dong Y; Zhang L; Mo X; Huang W; Tian J; Zhang S
    Cancer Lett; 2017 Sep; 403():21-27. PubMed ID: 28610955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiomics MRI Phenotyping with Machine Learning to Predict the Grade of Lower-Grade Gliomas: A Study Focused on Nonenhancing Tumors.
    Park YW; Choi YS; Ahn SS; Chang JH; Kim SH; Lee SK
    Korean J Radiol; 2019 Sep; 20(9):1381-1389. PubMed ID: 31464116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of machine learning classifiers for differentiation of grade 1 from higher gradings in meningioma: A multicenter radiomics study.
    Hamerla G; Meyer HJ; Schob S; Ginat DT; Altman A; Lim T; Gihr GA; Horvath-Rizea D; Hoffmann KT; Surov A
    Magn Reson Imaging; 2019 Nov; 63():244-249. PubMed ID: 31425811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A predictive model for distinguishing radiation necrosis from tumour progression after gamma knife radiosurgery based on radiomic features from MR images.
    Zhang Z; Yang J; Ho A; Jiang W; Logan J; Wang X; Brown PD; McGovern SL; Guha-Thakurta N; Ferguson SD; Fave X; Zhang L; Mackin D; Court LE; Li J
    Eur Radiol; 2018 Jun; 28(6):2255-2263. PubMed ID: 29178031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification of pulmonary lesion based on multiparametric MRI: utility of radiomics and comparison of machine learning methods.
    Wang X; Wan Q; Chen H; Li Y; Li X
    Eur Radiol; 2020 Aug; 30(8):4595-4605. PubMed ID: 32222795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Predicting cerebral glioma enhancement pattern using a machine learning-based magnetic resonance imaging radiomics model].
    He H; Guo E; Meng W; Wang Y; Wang W; He W; Wu Y; Yang W
    Nan Fang Yi Ke Da Xue Xue Bao; 2024 Jan; 44(1):194-200. PubMed ID: 38293992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Qualitative and Quantitative MRI Analysis in IDH1 Genotype Prediction of Lower-Grade Gliomas: A Machine Learning Approach.
    Cao M; Suo S; Zhang X; Wang X; Xu J; Yang W; Zhou Y
    Biomed Res Int; 2021; 2021():1235314. PubMed ID: 33553421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of radiomics for the prediction of local control of brain metastases after stereotactic radiosurgery.
    Mouraviev A; Detsky J; Sahgal A; Ruschin M; Lee YK; Karam I; Heyn C; Stanisz GJ; Martel AL
    Neuro Oncol; 2020 Jun; 22(6):797-805. PubMed ID: 31956919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiomics-based machine learning methods for isocitrate dehydrogenase genotype prediction of diffuse gliomas.
    Wu S; Meng J; Yu Q; Li P; Fu S
    J Cancer Res Clin Oncol; 2019 Mar; 145(3):543-550. PubMed ID: 30719536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging biomarker analysis of advanced multiparametric MRI for glioma grading.
    Vamvakas A; Williams SC; Theodorou K; Kapsalaki E; Fountas K; Kappas C; Vassiou K; Tsougos I
    Phys Med; 2019 Apr; 60():188-198. PubMed ID: 30910431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multimodality radiomics prediction of radiotherapy-induced the early proctitis and cystitis in rectal cancer patients: a machine learning study.
    Abbaspour S; Barahman M; Abdollahi H; Arabalibeik H; Hajainfar G; Babaei M; Iraji H; Barzegartahamtan M; Ay MR; Mahdavi SR
    Biomed Phys Eng Express; 2023 Dec; 10(1):. PubMed ID: 37995359
    [No Abstract]   [Full Text] [Related]  

  • 19. Machine Learning Methods for Optimal Radiomics-Based Differentiation Between Recurrence and Inflammation: Application to Nasopharyngeal Carcinoma Post-therapy PET/CT Images.
    Du D; Feng H; Lv W; Ashrafinia S; Yuan Q; Wang Q; Yang W; Feng Q; Chen W; Rahmim A; Lu L
    Mol Imaging Biol; 2020 Jun; 22(3):730-738. PubMed ID: 31338709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of radiomics machine-learning classifiers and feature selection for differentiation of sacral chordoma and sacral giant cell tumour based on 3D computed tomography features.
    Yin P; Mao N; Zhao C; Wu J; Sun C; Chen L; Hong N
    Eur Radiol; 2019 Apr; 29(4):1841-1847. PubMed ID: 30280245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 72.