BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 31835189)

  • 1. Hierarchical clustering applied to automatic atlas based segmentation of 25 cardiac sub-structures.
    Maffei N; Fiorini L; Aluisio G; D'Angelo E; Ferrazza P; Vanoni V; Lohr F; Meduri B; Guidi G
    Phys Med; 2020 Jan; 69():70-80. PubMed ID: 31835189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiomics classifier to quantify automatic segmentation quality of cardiac sub-structures for radiotherapy treatment planning.
    Maffei N; Manco L; Aluisio G; D'Angelo E; Ferrazza P; Vanoni V; Meduri B; Lohr F; Guidi G
    Phys Med; 2021 Mar; 83():278-286. PubMed ID: 33992865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geometric and dosimetric evaluation of atlas based auto-segmentation of cardiac structures in breast cancer patients.
    Kaderka R; Gillespie EF; Mundt RC; Bryant AK; Sanudo-Thomas CB; Harrison AL; Wouters EL; Moiseenko V; Moore KL; Atwood TF; Murphy JD
    Radiother Oncol; 2019 Feb; 131():215-220. PubMed ID: 30107948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atlas-based segmentation in breast cancer radiotherapy: Evaluation of specific and generic-purpose atlases.
    Ciardo D; Gerardi MA; Vigorito S; Morra A; Dell'acqua V; Diaz FJ; Cattani F; Zaffino P; Ricotti R; Spadea MF; Riboldi M; Orecchia R; Baroni G; Leonardi MC; Jereczek-Fossa BA
    Breast; 2017 Apr; 32():44-52. PubMed ID: 28033509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardiac atlas development and validation for automatic segmentation of cardiac substructures.
    Zhou R; Liao Z; Pan T; Milgrom SA; Pinnix CC; Shi A; Tang L; Yang J; Liu Y; Gomez D; Nguyen QN; Dabaja BS; Court L; Yang J
    Radiother Oncol; 2017 Jan; 122(1):66-71. PubMed ID: 27939201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiac Substructure Segmentation and Dosimetry Using a Novel Hybrid Magnetic Resonance and Computed Tomography Cardiac Atlas.
    Morris ED; Ghanem AI; Pantelic MV; Walker EM; Han X; Glide-Hurst CK
    Int J Radiat Oncol Biol Phys; 2019 Mar; 103(4):985-993. PubMed ID: 30468849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atlas Sampling for Prone Breast Automatic Segmentation of Organs at Risk: The Importance of Patients' Body Mass Index and Breast Cup Size for an Optimized Contouring of the Heart and the Coronary Vessels.
    Wang X; Miralbell R; Fargier-Bochaton O; Bulling S; Vallée JP; Dipasquale G
    Technol Cancer Res Treat; 2020; 19():1533033820920624. PubMed ID: 32314647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative clinical evaluation of atlas and deep-learning-based auto-segmentation of organ structures in liver cancer.
    Ahn SH; Yeo AU; Kim KH; Kim C; Goh Y; Cho S; Lee SB; Lim YK; Kim H; Shin D; Kim T; Kim TH; Youn SH; Oh ES; Jeong JH
    Radiat Oncol; 2019 Nov; 14(1):213. PubMed ID: 31775825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated delineation of brain structures in patients undergoing radiotherapy for primary brain tumors: from atlas to dose-volume histograms.
    Conson M; Cella L; Pacelli R; Comerci M; Liuzzi R; Salvatore M; Quarantelli M
    Radiother Oncol; 2014 Sep; 112(3):326-31. PubMed ID: 25012642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical validation of an automatic atlas-based segmentation tool for male pelvis CT images.
    Casati M; Piffer S; Calusi S; Marrazzo L; Simontacchi G; Di Cataldo V; Greto D; Desideri I; Vernaleone M; Francolini G; Livi L; Pallotta S
    J Appl Clin Med Phys; 2022 Mar; 23(3):e13507. PubMed ID: 35064746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localised delineation uncertainty for iterative atlas selection in automatic cardiac segmentation.
    Finnegan R; Lorenzen E; Dowling J; Holloway L; Thwaites D; Brink C
    Phys Med Biol; 2020 Feb; 65(3):035011. PubMed ID: 31869823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal number of atlases and label fusion for automatic multi-atlas-based brachial plexus contouring in radiotherapy treatment planning.
    Van de Velde J; Wouters J; Vercauteren T; De Gersem W; Achten E; De Neve W; Van Hoof T
    Radiat Oncol; 2016 Jan; 11():1. PubMed ID: 26743131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical feasibility of deep learning-based auto-segmentation of target volumes and organs-at-risk in breast cancer patients after breast-conserving surgery.
    Chung SY; Chang JS; Choi MS; Chang Y; Choi BS; Chun J; Keum KC; Kim JS; Kim YB
    Radiat Oncol; 2021 Feb; 16(1):44. PubMed ID: 33632248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility of multi-atlas cardiac segmentation from thoracic planning CT in a probabilistic framework.
    Finnegan R; Dowling J; Koh ES; Tang S; Otton J; Delaney G; Batumalai V; Luo C; Atluri P; Satchithanandha A; Thwaites D; Holloway L
    Phys Med Biol; 2019 Apr; 64(8):085006. PubMed ID: 30856618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auto-segmentation of low-risk clinical target volume for head and neck radiation therapy.
    Yang J; Beadle BM; Garden AS; Gunn B; Rosenthal D; Ang K; Frank S; Williamson R; Balter P; Court L; Dong L
    Pract Radiat Oncol; 2014; 4(1):e31-7. PubMed ID: 24621429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of clinical acceptability of an atlas-based segmentation algorithm for the delineation of organs at risk in head and neck cancer.
    Hoang Duc AK; Eminowicz G; Mendes R; Wong SL; McClelland J; Modat M; Cardoso MJ; Mendelson AF; Veiga C; Kadir T; D'Souza D; Ourselin S
    Med Phys; 2015 Sep; 42(9):5027-34. PubMed ID: 26328953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility of using a novel automatic cardiac segmentation algorithm in the clinical routine of lung cancer patients.
    Finnegan RN; Orlandini L; Liao X; Yin J; Lang J; Dowling J; Fontanarosa D
    PLoS One; 2021; 16(1):e0245364. PubMed ID: 33444379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An uncertainty-aware deep learning architecture with outlier mitigation for prostate gland segmentation in radiotherapy treatment planning.
    Li X; Bagher-Ebadian H; Gardner S; Kim J; Elshaikh M; Movsas B; Zhu D; Chetty IJ
    Med Phys; 2023 Jan; 50(1):311-322. PubMed ID: 36112996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of a Magnetic Resonance Imaging-based Auto-contouring Software Tool for Gross Tumour Delineation in Head and Neck Cancer Radiotherapy Planning.
    Doshi T; Wilson C; Paterson C; Lamb C; James A; MacKenzie K; Soraghan J; Petropoulakis L; Di Caterina G; Grose D
    Clin Oncol (R Coll Radiol); 2017 Jan; 29(1):60-67. PubMed ID: 27780693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic delineation of on-line head-and-neck computed tomography images: toward on-line adaptive radiotherapy.
    Zhang T; Chi Y; Meldolesi E; Yan D
    Int J Radiat Oncol Biol Phys; 2007 Jun; 68(2):522-30. PubMed ID: 17418960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.