These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 31835227)
1. Understanding the formation mechanism of oolong tea characteristic non-volatile chemical constitutes during manufacturing processes by using integrated widely-targeted metabolome and DIA proteome analysis. Wu L; Huang X; Liu S; Liu J; Guo Y; Sun Y; Lin J; Guo Y; Wei S Food Chem; 2020 Apr; 310():125941. PubMed ID: 31835227 [TBL] [Abstract][Full Text] [Related]
2. The stress-induced metabolites changes in the flavor formation of oolong tea during enzymatic-catalyzed process: A case study of Zhangping Shuixian tea. Wu L; Wang Y; Liu S; Sun Y; Li C; Lin J; Wei S Food Chem; 2022 Oct; 391():133192. PubMed ID: 35597038 [TBL] [Abstract][Full Text] [Related]
3. Study of the aroma formation and transformation during the manufacturing process of oolong tea by solid-phase micro-extraction and gas chromatography-mass spectrometry combined with chemometrics. Ma C; Li J; Chen W; Wang W; Qi D; Pang S; Miao A Food Res Int; 2018 Jun; 108():413-422. PubMed ID: 29735074 [TBL] [Abstract][Full Text] [Related]
4. Does Enzymatic Hydrolysis of Glycosidically Bound Volatile Compounds Really Contribute to the Formation of Volatile Compounds During the Oolong Tea Manufacturing Process? Gui J; Fu X; Zhou Y; Katsuno T; Mei X; Deng R; Xu X; Zhang L; Dong F; Watanabe N; Yang Z J Agric Food Chem; 2015 Aug; 63(31):6905-14. PubMed ID: 26212085 [TBL] [Abstract][Full Text] [Related]
5. Non-targeted metabolomics analysis reveals dynamic changes of volatile and non-volatile metabolites during oolong tea manufacture. Chen S; Liu H; Zhao X; Li X; Shan W; Wang X; Wang S; Yu W; Yang Z; Yu X Food Res Int; 2020 Feb; 128():108778. PubMed ID: 31955752 [TBL] [Abstract][Full Text] [Related]
6. Impact of Six Typical Processing Methods on the Chemical Composition of Tea Leaves Using a Single Camellia sinensis Cultivar, Longjing 43. Wang Y; Kan Z; Thompson HJ; Ling T; Ho CT; Li D; Wan X J Agric Food Chem; 2019 May; 67(19):5423-5436. PubMed ID: 30403138 [TBL] [Abstract][Full Text] [Related]
8. Formation of Volatile Tea Constituent Indole During the Oolong Tea Manufacturing Process. Zeng L; Zhou Y; Gui J; Fu X; Mei X; Zhen Y; Ye T; Du B; Dong F; Watanabe N; Yang Z J Agric Food Chem; 2016 Jun; 64(24):5011-9. PubMed ID: 27263428 [TBL] [Abstract][Full Text] [Related]
9. Changes in volatile compounds upon aging and drying in oolong tea production. Kuo PC; Lai YY; Chen YJ; Yang WH; Tzen JT J Sci Food Agric; 2011 Jan; 91(2):293-301. PubMed ID: 20945506 [TBL] [Abstract][Full Text] [Related]
10. Widely targeted metabolomic analysis reveals metabolite changes induced by incorporating black tea fermentation techniques in oolong tea processing for quality improvement. Hao M; Lai X; Li Q; Cao J; Sun L; Chen R; Zhang Z; Li Q; Lai Z; Sun S Food Chem; 2024 Nov; 459():140433. PubMed ID: 39024882 [TBL] [Abstract][Full Text] [Related]
11. Dynamic changes of volatile and phenolic components during the whole manufacturing process of Wuyi Rock tea (Rougui). Liu Z; Chen F; Sun J; Ni L Food Chem; 2022 Jan; 367():130624. PubMed ID: 34339982 [TBL] [Abstract][Full Text] [Related]
12. Quality development and main chemical components of Tieguanyin oolong teas processed from different parts of fresh shoots. Xu YQ; Liu PP; Shi J; Gao Y; Wang QS; Yin JF Food Chem; 2018 May; 249():176-183. PubMed ID: 29407922 [TBL] [Abstract][Full Text] [Related]
13. Elucidation of ( Z)-3-Hexenyl-β-glucopyranoside Enhancement Mechanism under Stresses from the Oolong Tea Manufacturing Process. Zeng L; Wang X; Xiao Y; Gu D; Liao Y; Xu X; Jia Y; Deng R; Song C; Yang Z J Agric Food Chem; 2019 Jun; 67(23):6541-6550. PubMed ID: 31125230 [TBL] [Abstract][Full Text] [Related]
14. Biosynthesis of Jasmine Lactone in Tea ( Camellia sinensis) Leaves and Its Formation in Response to Multiple Stresses. Zeng L; Zhou Y; Fu X; Liao Y; Yuan Y; Jia Y; Dong F; Yang Z J Agric Food Chem; 2018 Apr; 66(15):3899-3909. PubMed ID: 29605993 [TBL] [Abstract][Full Text] [Related]
15. Comprehensive investigation on non-volatile and volatile metabolites in four types of green teas obtained from the same tea cultivar of Longjing 43 (Camellia sinensis var. sinensis) using the widely targeted metabolomics. Shi Y; Zhu Y; Ma W; Shi J; Peng Q; Lin Z; Lv H Food Chem; 2022 Nov; 394():133501. PubMed ID: 35728471 [TBL] [Abstract][Full Text] [Related]
16. Metabolomics combined with proteomics provides a novel interpretation of the changes in nonvolatile compounds during white tea processing. Chen Q; Shi J; Mu B; Chen Z; Dai W; Lin Z Food Chem; 2020 Dec; 332():127412. PubMed ID: 32623128 [TBL] [Abstract][Full Text] [Related]
17. Influence of Chloroplast Defects on Formation of Jasmonic Acid and Characteristic Aroma Compounds in Tea ( Li J; Zeng L; Liao Y; Gu D; Tang J; Yang Z Int J Mol Sci; 2019 Feb; 20(5):. PubMed ID: 30818885 [TBL] [Abstract][Full Text] [Related]
18. Tea aroma formation from six model manufacturing processes. Feng Z; Li Y; Li M; Wang Y; Zhang L; Wan X; Yang X Food Chem; 2019 Jul; 285():347-354. PubMed ID: 30797356 [TBL] [Abstract][Full Text] [Related]
19. Characterisation of volatile and non-volatile metabolites in etiolated leaves of tea (Camellia sinensis) plants in the dark. Yang Z; Kobayashi E; Katsuno T; Asanuma T; Fujimori T; Ishikawa T; Tomomura M; Mochizuki K; Watase T; Nakamura Y; Watanabe N Food Chem; 2012 Dec; 135(4):2268-76. PubMed ID: 22980801 [TBL] [Abstract][Full Text] [Related]
20. Metabolomic unveiling of a diverse range of green tea (Camellia sinensis) metabolites dependent on geography. Lee JE; Lee BJ; Chung JO; Kim HN; Kim EH; Jung S; Lee H; Lee SJ; Hong YS Food Chem; 2015 May; 174():452-9. PubMed ID: 25529705 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]