These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 31835258)

  • 1. Numerical investigation of plasmon sensitivity and surface-enhanced Raman scattering enhancement of individual TiN nanosphere multimers.
    Fu T; Chen Y; Du C; Yang W; Zhang R; Sun L; Shi D
    Nanotechnology; 2020 Mar; 31(13):135210. PubMed ID: 31835258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergetic SERS Enhancement in a Metal-Like/Metal Double-Shell Structure for Sensitive and Stable Application.
    Ban R; Yu Y; Zhang M; Yin J; Xu B; Wu DY; Wu M; Zhang Z; Tai H; Li J; Kang J
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13564-13570. PubMed ID: 28349691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Confined Gaussian-distributed electromagnetic field of tin(II) chloride-sensitized surface-enhanced Raman scattering (SERS) optical fiber probe: From localized surface plasmon resonance (LSPR) to waveguide propagation.
    Long Y; Li H; Du Z; Geng M; Liu Z
    J Colloid Interface Sci; 2021 Jan; 581(Pt B):698-708. PubMed ID: 32814193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Refractory plasmonics: orientation-dependent plasmonic coupling in TiN and ZrN nanocubes.
    El-Saeed AH; Allam NK
    Phys Chem Chem Phys; 2018 Jan; 20(3):1881-1888. PubMed ID: 29296979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnesium Nanoparticles for Surface-Enhanced Raman Scattering and Plasmon-Driven Catalysis.
    Ten A; Lomonosov V; Boukouvala C; Ringe E
    ACS Nano; 2024 Jul; 18(28):18785-18799. PubMed ID: 38963330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New coupling mechanism of titanium nitride nanosphere dimers at short separation distances.
    Cao P; Chen H; Liang M; Dou J; Cheng L
    Nanotechnology; 2019 Aug; 30(33):335204. PubMed ID: 31035275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced Raman scattering probes.
    Lee JH; You MH; Kim GH; Nam JM
    Nano Lett; 2014 Nov; 14(11):6217-25. PubMed ID: 25275930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of the surface plasmon resonance tunability of silver/gold core-shell nanostructures.
    Chahinez D; Reji T; Andreas R
    RSC Adv; 2018 May; 8(35):19616-19626. PubMed ID: 35540971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic nanogap-enhanced Raman scattering using a resonant nanodome array.
    Wu HY; Choi CJ; Cunningham BT
    Small; 2012 Sep; 8(18):2878-85. PubMed ID: 22761112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hollow Porous Gold Nanoshells with Controlled Nanojunctions for Highly Tunable Plasmon Resonances and Intense Field Enhancements for Surface-Enhanced Raman Scattering.
    Jeong S; Kim MW; Jo YR; Kim NY; Kang D; Lee SY; Yim SY; Kim BJ; Kim JH
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44458-44465. PubMed ID: 31718128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binary Plasmonic Assembly Films with Hotspot-Type-Dependent Surface-Enhanced Raman Scattering Properties.
    Lin S; Guan H; Liu Y; Huang S; Li J; Hasi W; Xu Y; Zou J; Dong B
    ACS Appl Mater Interfaces; 2021 Nov; 13(44):53289-53299. PubMed ID: 34704435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Raman scattering enhanced within the plasmonic gap between an isolated Ag triangular nanoplate and Ag film.
    Li K; Jiang K; Zhang L; Wang Y; Mao L; Zeng J; Lu Y; Wang P
    Nanotechnology; 2016 Apr; 27(16):165401. PubMed ID: 26939539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localized surface plasmon resonance spectroscopy and sensing.
    Willets KA; Van Duyne RP
    Annu Rev Phys Chem; 2007; 58():267-97. PubMed ID: 17067281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tailoring plasmonic properties of gold nanohole arrays for surface-enhanced Raman scattering.
    Zheng P; Cushing SK; Suri S; Wu N
    Phys Chem Chem Phys; 2015 Sep; 17(33):21211-9. PubMed ID: 25586930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-dependent SERS activity of plasmonic nanorattles with built-in electromagnetic hotspots.
    Liu KK; Tadepalli S; Wang Z; Jiang Q; Singamaneni S
    Analyst; 2017 Nov; 142(23):4536-4543. PubMed ID: 29111555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical investigations on the electromagnetic enhancement effect to tip-enhanced Raman scattering and fluorescence processes.
    Wei Y; Pei H; Sun D; Duan S; Tian G
    J Phys Condens Matter; 2019 Jun; 31(23):235301. PubMed ID: 30818299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-scale self-organized gold nanostructures with bidirectional plasmon resonances for SERS.
    Schreiber B; Gkogkou D; Dedelaite L; Kerbusch J; Hübner R; Sheremet E; Zahn DRT; Ramanavicius A; Facsko S; Rodriguez RD
    RSC Adv; 2018 Jun; 8(40):22569-22576. PubMed ID: 35539709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative Plasmon Mode and Surface-Enhanced Raman Scattering Analyses of Strongly Coupled Plasmonic Nanotrimers with Diverse Geometries.
    Lee H; Kim GH; Lee JH; Kim NH; Nam JM; Suh YD
    Nano Lett; 2015 Jul; 15(7):4628-36. PubMed ID: 26075353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detailed correlations between SERS enhancement and plasmon resonances in subwavelength closely spaced Au nanorod arrays.
    Huang Y; Zhang X; Ringe E; Ma L; Zhai X; Wang L; Zhang Z
    Nanoscale; 2018 Mar; 10(9):4267-4275. PubMed ID: 29436546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.