These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 31835355)

  • 21. Evaluation of NPP-VIIRS Nighttime Light Data for Mapping Global Fossil Fuel Combustion CO2 Emissions: A Comparison with DMSP-OLS Nighttime Light Data.
    Ou J; Liu X; Li X; Li M; Li W
    PLoS One; 2015; 10(9):e0138310. PubMed ID: 26390037
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detecting Pest-Infested Forest Damage through Multispectral Satellite Imagery and Improved UNet+.
    Zhang J; Cong S; Zhang G; Ma Y; Zhang Y; Huang J
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236538
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spatiotemporal analysis of ground and satellite-based aerosol for air quality assessment in the Southeast Asia region.
    Nguyen TTN; Pham HV; Lasko K; Bui MT; Laffly D; Jourdan A; Bui HQ
    Environ Pollut; 2019 Dec; 255(Pt 1):113106. PubMed ID: 31541826
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wildfire effects on two freshwater producers: Combining in-situ and laboratory bioassays.
    Ré A; Campos I; Saraiva MJ; Puga J; Keizer JJ; Gonçalves FJM; Pereira JL; Abrantes N
    Ecotoxicol Environ Saf; 2020 May; 194():110361. PubMed ID: 32126411
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Estimating Biomass Burned Areas from Multispectral Dataset Detected by Multiple-Satellite].
    Yu C; Chen LF; Li SS; Tao JH; Su L
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Mar; 35(3):739-45. PubMed ID: 26117890
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transitioning from MODIS to VIIRS: an analysis of inter-consistency of NDVI data sets for agricultural monitoring.
    Skakun S; Justice CO; Vermote E; Roger JC
    Int J Remote Sens; 2018; 39(4):971-992. PubMed ID: 29892137
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Estimation of consumption potentiality using VIIRS night-time light data.
    Wang L; Fan H; Wang Y
    PLoS One; 2018; 13(10):e0206230. PubMed ID: 30365524
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wildfire refugia in forests: Severe fire weather and drought mute the influence of topography and fuel age.
    Collins L; Bennett AF; Leonard SWJ; Penman TD
    Glob Chang Biol; 2019 Nov; 25(11):3829-3843. PubMed ID: 31215102
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intercomparison of MODIS AQUA and VIIRS I-Band Fires and Emissions in an Agricultural Landscape-Implications for Air Pollution Research.
    Vadrevu K; Lasko K
    Remote Sens (Basel); 2018 Jul; 10(7):978. PubMed ID: 30151254
    [TBL] [Abstract][Full Text] [Related]  

  • 30. National scale operational mapping of burnt areas as a tool for the better understanding of contemporary wildfire patterns and regimes.
    Kontoes C; Keramitsoglou I; Papoutsis I; Sifakis NI; Xofis P
    Sensors (Basel); 2013 Aug; 13(8):11146-66. PubMed ID: 23966201
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessing and reinitializing wildland fire simulations through satellite active fire data.
    Cardil A; Monedero S; Ramírez J; Silva CA
    J Environ Manage; 2019 Feb; 231():996-1003. PubMed ID: 30602261
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of a large wildfire on vegetation structure in a variable fire mosaic.
    Foster CN; Barton PS; Robinson NM; MacGregor CI; Lindenmayer DB
    Ecol Appl; 2017 Dec; 27(8):2369-2381. PubMed ID: 28851094
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wildfires as a major challenge for natural regeneration in Atlantic Forest.
    Dos Santos JFC; Gleriani JM; Velloso SGS; de Souza GSA; do Amaral CH; Torres FTP; Medeiros NDG; Dos Reis M
    Sci Total Environ; 2019 Feb; 650(Pt 1):809-821. PubMed ID: 30308856
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Occurrence frequencies and regional variations in Visible Infrared Imaging Radiometer Suite (VIIRS) global active fires.
    Li P; Xiao C; Feng Z; Li W; Zhang X
    Glob Chang Biol; 2020 May; 26(5):2970-2987. PubMed ID: 32037661
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using a combination of nighttime light and MODIS data to estimate spatiotemporal patterns of CO
    Guo W; Li Y; Li P; Zhao X; Zhang J
    Sci Total Environ; 2022 Nov; 848():157630. PubMed ID: 35901869
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Repeated wildfires alter forest recovery of mixed-conifer ecosystems.
    Stevens-Rumann C; Morgan P
    Ecol Appl; 2016 Sep; 26(6):1842-1853. PubMed ID: 27755710
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rapid assessment of cyclone damage using NPP-VIIRS DNB and ancillary data.
    Sarkar S
    Nat Hazards (Dordr); 2021; 106(1):579-593. PubMed ID: 33424122
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wildfire impacts on freshwater detrital food webs depend on runoff load, exposure time and burnt forest type.
    Carvalho F; Pradhan A; Abrantes N; Campos I; Keizer JJ; Cássio F; Pascoal C
    Sci Total Environ; 2019 Nov; 692():691-700. PubMed ID: 31539977
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigation of the relationship between burned areas and climate factors in large forest fires in theÇanakkaleregion.
    Ertugrul M; Ozel HB; Varol T; Cetin M; Sevik H
    Environ Monit Assess; 2019 Nov; 191(12):737. PubMed ID: 31707495
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The influence of the open burning of agricultural biomass and forest fires in Thailand on the carbonaceous components in size-fractionated particles.
    Phairuang W; Suwattiga P; Chetiyanukornkul T; Hongtieab S; Limpaseni W; Ikemori F; Hata M; Furuuchi M
    Environ Pollut; 2019 Apr; 247():238-247. PubMed ID: 30685664
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.