BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 31835372)

  • 1. Polyglycerol Hyperbranched Polyesters: Synthesis, Properties and Pharmaceutical and Biomedical Applications.
    Zamboulis A; Nakiou EA; Christodoulou E; Bikiaris DN; Kontonasaki E; Liverani L; Boccaccini AR
    Int J Mol Sci; 2019 Dec; 20(24):. PubMed ID: 31835372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperbranched polyglycerols: from the controlled synthesis of biocompatible polyether polyols to multipurpose applications.
    Wilms D; Stiriba SE; Frey H
    Acc Chem Res; 2010 Jan; 43(1):129-41. PubMed ID: 19785402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dendritic polyglycerol: a new versatile biocompatible-material.
    Frey H; Haag R
    J Biotechnol; 2002 May; 90(3-4):257-67. PubMed ID: 12071228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradable polyesters through chain linking for packaging and biomedical applications.
    Seppälä JV; Helminen AO; Korhonen H
    Macromol Biosci; 2004 Mar; 4(3):208-17. PubMed ID: 15468210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beyond poly(ethylene glycol): linear polyglycerol as a multifunctional polyether for biomedical and pharmaceutical applications.
    Thomas A; Müller SS; Frey H
    Biomacromolecules; 2014 Jun; 15(6):1935-54. PubMed ID: 24813747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis, properties and biomedical applications of hydrolytically degradable materials based on aliphatic polyesters and polycarbonates.
    Brannigan RP; Dove AP
    Biomater Sci; 2016 Dec; 5(1):9-21. PubMed ID: 27840864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Folate-conjugated amphiphilic hyperbranched block copolymers based on Boltorn H40, poly(L-lactide) and poly(ethylene glycol) for tumor-targeted drug delivery.
    Prabaharan M; Grailer JJ; Pilla S; Steeber DA; Gong S
    Biomaterials; 2009 Jun; 30(16):3009-19. PubMed ID: 19250665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperbranched Copolymers Based on Glycidol and Amino Glycidyl Ether: Highly Biocompatible Polyamines Sheathed in Polyglycerols.
    Song S; Lee J; Kweon S; Song J; Kim K; Kim BS
    Biomacromolecules; 2016 Nov; 17(11):3632-3639. PubMed ID: 27739685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of a High-Efficiency Drug and Gene Co-Delivery System for Cancer Therapy from a pH-Sensitive Supramolecular Inclusion between Oligoethylenimine- graft-β-cyclodextrin and Hyperbranched Polyglycerol Derivative.
    Zhou X; Xu L; Xu J; Wu J; Kirk TB; Ma D; Xue W
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):35812-35829. PubMed ID: 30277375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A convergent approach to biocompatible polyglycerol "click" dendrons for the synthesis of modular core-shell architectures and their transport behavior.
    Wyszogrodzka M; Haag R
    Chemistry; 2008; 14(30):9202-14. PubMed ID: 18770511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymers of malic acid and 3-alkylmalic acid as synthetic PHAs in the design of biocompatible hydrolyzable devices.
    Cammas S; Béar MM; Moine L; Escalup R; Ponchel G; Kataoka K; Guérin P
    Int J Biol Macromol; 1999; 25(1-3):273-82. PubMed ID: 10416675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperbranched polyglycerol nanostructures for anti-biofouling, multifunctional drug delivery, bioimaging and theranostic applications.
    Jafari M; Abolmaali SS; Najafi H; Tamaddon AM
    Int J Pharm; 2020 Feb; 576():118959. PubMed ID: 31870963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Vivo Biological Evaluation of High Molecular Weight Multifunctional Acid-Degradable Polymeric Drug Carriers with Structurally Different Ketals.
    Shenoi RA; Abbina S; Kizhakkedathu JN
    Biomacromolecules; 2016 Nov; 17(11):3683-3693. PubMed ID: 27750017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and characterization of glycerol dendrons, self-assembled monolayers on gold: a detailed study of their protein resistance.
    Wyszogrodzka M; Haag R
    Biomacromolecules; 2009 May; 10(5):1043-54. PubMed ID: 19351158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and physicochemical characterization of a novel amphiphilic polylactic acid-hyperbranched polyglycerol conjugate for protein delivery.
    Gao X; Zhang X; Wu Z; Zhang X; Wang Z; Li C
    J Control Release; 2009 Dec; 140(2):141-7. PubMed ID: 19683553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in glycerol polymers: chemistry and biomedical applications.
    Zhang H; Grinstaff MW
    Macromol Rapid Commun; 2014 Nov; 35(22):1906-24. PubMed ID: 25308354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unimolecular micelles based on hydrophobically derivatized hyperbranched polyglycerols: biodistribution studies.
    Kainthan RK; Brooks DE
    Bioconjug Chem; 2008 Nov; 19(11):2231-8. PubMed ID: 18847230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent developments in ring opening polymerization of lactones for biomedical applications.
    Albertsson AC; Varma IK
    Biomacromolecules; 2003; 4(6):1466-86. PubMed ID: 14606869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in synthetic bioelastomers.
    Shi R; Chen D; Liu Q; Wu Y; Xu X; Zhang L; Tian W
    Int J Mol Sci; 2009 Nov; 10(10):4223-4256. PubMed ID: 20057942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of atactic and isotactic poly(1,2-glycerol carbonate)s: degradable polymers for biomedical and pharmaceutical applications.
    Zhang H; Grinstaff MW
    J Am Chem Soc; 2013 May; 135(18):6806-9. PubMed ID: 23611027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.