BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 31835453)

  • 1. µ-PIV Measurements of Flows Generated by Photolithography-Fabricated Achiral Microswimmers.
    Tan L; Ali J; Cheang UK; Shi X; Kim D; Kim MJ
    Micromachines (Basel); 2019 Dec; 10(12):. PubMed ID: 31835453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving Swimming Performance of Photolithography-Based Microswimmers Using Curvature Structures.
    Tan L; Wang Z; Chen Z; Shi X; Cheang UK
    Micromachines (Basel); 2022 Nov; 13(11):. PubMed ID: 36422394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled Propulsion of Two-Dimensional Microswimmers in a Precessing Magnetic Field.
    Tottori S; Nelson BJ
    Small; 2018 Jun; 14(24):e1800722. PubMed ID: 29749100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilization of CsPbBr
    Wang H; Xiong J; Cai Y; Fu W; Zhong Y; Jiang T; Cheang UK
    Small; 2024 Jul; ():e2400346. PubMed ID: 38958090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stop-Flow Lithography for the Continuous Production of Degradable Hydrogel Achiral Crescent Microswimmers.
    Xiong J; Song X; Cai Y; Liu J; Li Y; Ji Y; Guo L; Cheang UK
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 2D Magnetic Microswimmers for Targeted Cell Transport and 3D Cell Culture Structure Construction.
    Chen Z; Song X; Mu X; Zhang J; Cheang UK
    ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36752406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Propulsion of magnetically actuated achiral planar microswimmers in Newtonian and non-Newtonian fluids.
    Chen Z; Wang Z; Quashie D; Benhal P; Ali J; Kim MJ; Cheang UK
    Sci Rep; 2021 Oct; 11(1):21190. PubMed ID: 34707091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-Resolved Particle Image Velocimetry Measurements with Wall Shear Stress and Uncertainty Quantification for the FDA Nozzle Model.
    Raben JS; Hariharan P; Robinson R; Malinauskas R; Vlachos PP
    Cardiovasc Eng Technol; 2016 Mar; 7(1):7-22. PubMed ID: 26628081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetically-actuated hydrogel-based achiral planar microswimmers for SERS detection: In situ coprecipitation for continuous loading of iron oxide nanoparticles.
    Xiong J; Zhang J; Zhong Y; Song X; Wang H; Cheang UK
    Front Bioeng Biotechnol; 2023; 11():1086106. PubMed ID: 36959904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system.
    Lima R; Wada S; Tanaka S; Takeda M; Ishikawa T; Tsubota K; Imai Y; Yamaguchi T
    Biomed Microdevices; 2008 Apr; 10(2):153-67. PubMed ID: 17885805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetization directions and geometries of helical microswimmers for linear velocity-frequency response.
    Fu HC; Jabbarzadeh M; Meshkati F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):043011. PubMed ID: 25974584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inter-Laboratory Characterization of the Velocity Field in the FDA Blood Pump Model Using Particle Image Velocimetry (PIV).
    Hariharan P; Aycock KI; Buesen M; Day SW; Good BC; Herbertson LH; Steinseifer U; Manning KB; Craven BA; Malinauskas RA
    Cardiovasc Eng Technol; 2018 Dec; 9(4):623-640. PubMed ID: 30291585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light-Triggered Drug Release from 3D-Printed Magnetic Chitosan Microswimmers.
    Bozuyuk U; Yasa O; Yasa IC; Ceylan H; Kizilel S; Sitti M
    ACS Nano; 2018 Sep; 12(9):9617-9625. PubMed ID: 30203963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Review of Planar PIV Systems and Image Processing Tools for Lab-On-Chip Microfluidics.
    Ergin FG; Watz BB; Gade-Nielsen NF
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30217102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of flow velocity fields in small vessel-mimic phantoms and vessels of small animals using micro ultrasonic particle image velocimetry (micro-EPIV).
    Qian M; Niu L; Wang Y; Jiang B; Jin Q; Jiang C; Zheng H
    Phys Med Biol; 2010 Oct; 55(20):6069-88. PubMed ID: 20858920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV.
    Kinoshita H; Kaneda S; Fujii T; Oshima M
    Lab Chip; 2007 Mar; 7(3):338-46. PubMed ID: 17330165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro confocal micro-PIV measurements of blood flow in a square microchannel: the effect of the haematocrit on instantaneous velocity profiles.
    Lima R; Wada S; Takeda M; Tsubota K; Yamaguchi T
    J Biomech; 2007; 40(12):2752-7. PubMed ID: 17399723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stereoscopic particle image velocimetry in inhomogeneous refractive index fields of combustion flows.
    Vanselow C; Hoppe O; Stöbener D; Fischer A
    Appl Opt; 2021 Oct; 60(28):8716-8727. PubMed ID: 34613097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of groups of magnetically driven artificial microswimmers.
    Buzhardt J; Tallapragada P
    Phys Rev E; 2019 Sep; 100(3-1):033106. PubMed ID: 31640057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical Coupling of Puller and Pusher Active Microswimmers Influences Motility.
    Singh AV; Kishore V; Santomauro G; Yasa O; Bill J; Sitti M
    Langmuir; 2020 May; 36(19):5435-5443. PubMed ID: 32343587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.