These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 31835507)
1. A Parameter Study for 3D-Printing Organized Nanofibrous Collagen Scaffolds Using Direct-Write Electrospinning. Alexander FA; Johnson L; Williams K; Packer K Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31835507 [TBL] [Abstract][Full Text] [Related]
2. Processing variables of direct-write, near-field electrospinning impact size and morphology of gelatin fibers. Davis ZG; Hussain AF; Fisher MB Biomed Mater; 2021 May; 16(4):. PubMed ID: 33857922 [TBL] [Abstract][Full Text] [Related]
3. The Manufacturing Conditions for the Direct and Reproducible Formation of Electrospun PCL/Gelatine 3D Structures for Tissue Regeneration. Howard CJ; Paul A; Duruanyanwu J; Sackho K; Campagnolo P; Stolojan V Nanomaterials (Basel); 2023 Dec; 13(24):. PubMed ID: 38133004 [TBL] [Abstract][Full Text] [Related]
4. 2D and 3D Electrospinning of Nanofibrous Structures by Far-Field Jet Writing. Jiang S; Kang Z; Liu F; Fan J ACS Appl Mater Interfaces; 2023 May; 15(19):23777-23782. PubMed ID: 37148278 [TBL] [Abstract][Full Text] [Related]
5. Three-dimensional endothelial cell incorporation within bioactive nanofibrous scaffolds through concurrent emulsion electrospinning and coaxial cell electrospraying. Zhao Q; Zhou Y; Wang M Acta Biomater; 2021 Mar; 123():312-324. PubMed ID: 33508508 [TBL] [Abstract][Full Text] [Related]
6. Development of 3D Printed Electrospun Scaffolds for the Fabrication of Porous Scaffolds for Vascular Applications. Bansal J; Neuman K; Greene VK; Rubenstein DA 3D Print Addit Manuf; 2022 Oct; 9(5):380-388. PubMed ID: 36660297 [TBL] [Abstract][Full Text] [Related]
7. Combining Materials Obtained by 3D-Printing and Electrospinning from Commercial Polylactide Filament to Produce Biocompatible Composites. Romero-Araya P; Pino V; Nenen A; Cárdenas V; Pavicic F; Ehrenfeld P; Serandour G; Lisoni JG; Moreno-Villoslada I; Flores ME Polymers (Basel); 2021 Nov; 13(21):. PubMed ID: 34771361 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of 3D Printed poly(lactic acid) strut and wet-electrospun cellulose nano fiber reinforced chitosan-collagen hydrogel composite scaffolds for meniscus tissue engineering. Gunes OC; Kara A; Baysan G; Bugra Husemoglu R; Akokay P; Ziylan Albayrak A; Ergur BU; Havitcioglu H J Biomater Appl; 2022 Oct; 37(4):683-697. PubMed ID: 35722881 [TBL] [Abstract][Full Text] [Related]
9. Direct Writing Electrospinning of Scaffolds with Multidimensional Fiber Architecture for Hierarchical Tissue Engineering. Chen H; Malheiro ABFB; van Blitterswijk C; Mota C; Wieringa PA; Moroni L ACS Appl Mater Interfaces; 2017 Nov; 9(44):38187-38200. PubMed ID: 29043781 [TBL] [Abstract][Full Text] [Related]
10. Low-Voltage Continuous Electrospinning Patterning. Li X; Li Z; Wang L; Ma G; Meng F; Pritchard RH; Gill EL; Liu Y; Huang YY ACS Appl Mater Interfaces; 2016 Nov; 8(47):32120-32131. PubMed ID: 27807979 [TBL] [Abstract][Full Text] [Related]
11. Direct-Write, Self-Aligned Electrospinning on Paper for Controllable Fabrication of Three-Dimensional Structures. Luo G; Teh KS; Liu Y; Zang X; Wen Z; Lin L ACS Appl Mater Interfaces; 2015 Dec; 7(50):27765-70. PubMed ID: 26592741 [TBL] [Abstract][Full Text] [Related]
12. Acrylonitrile and Pullulan Based Nanofiber Mats as Easily Accessible Scaffolds for 3D Skin Cell Models Containing Primary Cells. Rimann M; Jüngel A; Mousavi S; Moeschlin N; Calcagni M; Wuertz-Kozak K; Brunner F; Dudli S; Distler O; Adlhart C Cells; 2022 Jan; 11(3):. PubMed ID: 35159255 [TBL] [Abstract][Full Text] [Related]
13. Living nanofiber yarn-based woven biotextiles for tendon tissue engineering using cell tri-culture and mechanical stimulation. Wu S; Wang Y; Streubel PN; Duan B Acta Biomater; 2017 Oct; 62():102-115. PubMed ID: 28864251 [TBL] [Abstract][Full Text] [Related]
14. Bicomponent electrospinning to fabricate three-dimensional hydrogel-hybrid nanofibrous scaffolds with spatial fiber tortuosity. Jin G; Lee S; Kim SH; Kim M; Jang JH Biomed Microdevices; 2014 Dec; 16(6):793-804. PubMed ID: 24972552 [TBL] [Abstract][Full Text] [Related]
15. Hierarchical electrospun tendon-ligament bioinspired scaffolds induce changes in fibroblasts morphology under static and dynamic conditions. Sensini A; Cristofolini L; Zucchelli A; Focarete ML; Gualandi C; DE Mori A; Kao AP; Roldo M; Blunn G; Tozzi G J Microsc; 2020 Mar; 277(3):160-169. PubMed ID: 31339556 [TBL] [Abstract][Full Text] [Related]
16. Musculoskeletal Tissue Engineering Using Fibrous Biomaterials. Tan G; Zhou Y; Sooriyaarachchi D Methods Mol Biol; 2021; 2193():31-40. PubMed ID: 32808256 [TBL] [Abstract][Full Text] [Related]
17. Electrospinning of collagen: enzymatic and spectroscopic analyses reveal solvent-independent disruption of the triple-helical structure. Visser D; Rogg K; Fuhrmann E; Marzi J; Schenke-Layland K; Hartmann H J Mater Chem B; 2023 Mar; 11(10):2207-2218. PubMed ID: 36786208 [TBL] [Abstract][Full Text] [Related]
18. Biomimetic Scaffolds Obtained by Electrospinning of Collagen-Based Materials: Strategies to Hinder the Protein Denaturation. Montalbano G; Tomasina C; Fiorilli S; Camarero-Espinosa S; Vitale-Brovarone C; Moroni L Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34442884 [TBL] [Abstract][Full Text] [Related]
19. Combination of electrospinning with other techniques for the fabrication of 3D polymeric and composite nanofibrous scaffolds with improved cellular interactions. Bongiovanni Abel S; Montini Ballarin F; Abraham GA Nanotechnology; 2020 Apr; 31(17):172002. PubMed ID: 31931493 [TBL] [Abstract][Full Text] [Related]
20. Direct printing of patterned three-dimensional ultrafine fibrous scaffolds by stable jet electrospinning for cellular ingrowth. Yuan H; Zhou Q; Li B; Bao M; Lou X; Zhang Y Biofabrication; 2015 Nov; 7(4):045004. PubMed ID: 26538110 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]