These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 31835507)
41. Biofabrication of Electrospun Scaffolds for the Regeneration of Tendons and Ligaments. Sensini A; Cristofolini L Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30322082 [TBL] [Abstract][Full Text] [Related]
42. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance. Kennedy KM; Bhaw-Luximon A; Jhurry D Acta Biomater; 2017 Mar; 50():41-55. PubMed ID: 28011142 [TBL] [Abstract][Full Text] [Related]
43. The Use of Electrospinning Technique on Osteochondral Tissue Engineering. Casanova MR; Reis RL; Martins A; Neves NM Adv Exp Med Biol; 2018; 1058():247-263. PubMed ID: 29691825 [TBL] [Abstract][Full Text] [Related]
44. Electrospinning of fibrous polymer scaffolds using positive voltage or negative voltage: a comparative study. Tong HW; Wang M Biomed Mater; 2010 Oct; 5(5):054110. PubMed ID: 20876963 [TBL] [Abstract][Full Text] [Related]
45. Parametric control of fiber morphology and tensile mechanics in scaffolds with high aspect ratio geometry produced via melt electrowriting for musculoskeletal soft tissue engineering. Warren PB; Davis ZG; Fisher MB J Mech Behav Biomed Mater; 2019 Nov; 99():153-160. PubMed ID: 31352215 [TBL] [Abstract][Full Text] [Related]
46. Self-Searching Writing of Human-Organ-Scale Three-Dimensional Topographic Scaffolds with Shape Memory by Silkworm-like Electrospun Autopilot Jet. Navaneethan B; Chou CF ACS Appl Mater Interfaces; 2022 Sep; 14(38):42841-42851. PubMed ID: 36106830 [TBL] [Abstract][Full Text] [Related]
47. Advanced 3D Electrospinning "Xspin" System: Fabrication of Bifiber Floating Oral Pharmaceutical Scaffolds for Controlled Drug Delivery. Darwesh AY; Zhang Y; Aghda NH; Alkadi F; Maniruzzaman M Mol Pharm; 2024 Feb; 21(2):916-931. PubMed ID: 38235686 [TBL] [Abstract][Full Text] [Related]
48. Evaluation of electrospinning parameters on the tensile strength and suture retention strength of polycaprolactone nanofibrous scaffolds through surface response methodology. Asvar Z; Mirzaei E; Azarpira N; Geramizadeh B; Fadaie M J Mech Behav Biomed Mater; 2017 Nov; 75():369-378. PubMed ID: 28802205 [TBL] [Abstract][Full Text] [Related]
49. Melt Electrospinning Writing of Poly-Hydroxymethylglycolide-co-ε-Caprolactone-Based Scaffolds for Cardiac Tissue Engineering. Castilho M; Feyen D; Flandes-Iparraguirre M; Hochleitner G; Groll J; Doevendans PAF; Vermonden T; Ito K; Sluijter JPG; Malda J Adv Healthc Mater; 2017 Sep; 6(18):. PubMed ID: 28699224 [TBL] [Abstract][Full Text] [Related]
50. Fabrication of hybrid scaffolds obtained from combinations of PCL with gelatin or collagen via electrospinning for skeletal muscle tissue engineering. Perez-Puyana V; Wieringa P; Yuste Y; de la Portilla F; Guererro A; Romero A; Moroni L J Biomed Mater Res A; 2021 Sep; 109(9):1600-1612. PubMed ID: 33665968 [TBL] [Abstract][Full Text] [Related]
51. Effect of Electrospinning Parameters on the Fiber Diameter and Morphology of PLGA Nanofibers. Kalluri L; Satpathy M; Duan Y Dent Oral Biol Craniofacial Res; 2021; 4(2):. PubMed ID: 36970249 [TBL] [Abstract][Full Text] [Related]
52. Electrospun porous bilayer nano-fibrous fish collagen/PCL bio-composite scaffolds with covalently cross-linked chitooligosaccharides for full-thickness wound-healing applications. Chandika P; Oh GW; Heo SY; Kim SC; Kim TH; Kim MS; Jung WK Mater Sci Eng C Mater Biol Appl; 2021 Feb; 121():111871. PubMed ID: 33579504 [TBL] [Abstract][Full Text] [Related]
53. Green electrospinning for biomaterials and biofabrication. Mosher CZ; Brudnicki PAP; Gong Z; Childs HR; Lee SW; Antrobus RM; Fang EC; Schiros TN; Lu HH Biofabrication; 2021 Jun; 13(3):. PubMed ID: 34102612 [TBL] [Abstract][Full Text] [Related]
54. Electrospun bio-composite P(LLA-CL)/collagen I/collagen III scaffolds for nerve tissue engineering. Kijeńska E; Prabhakaran MP; Swieszkowski W; Kurzydlowski KJ; Ramakrishna S J Biomed Mater Res B Appl Biomater; 2012 May; 100(4):1093-102. PubMed ID: 22438340 [TBL] [Abstract][Full Text] [Related]
55. The impact of relative humidity on electrospun polymer fibers: From structural changes to fiber morphology. Szewczyk PK; Stachewicz U Adv Colloid Interface Sci; 2020 Dec; 286():102315. PubMed ID: 33197707 [TBL] [Abstract][Full Text] [Related]
56. Electrospun type 1 collagen matrices preserving native ultrastructure using benign binary solvent for cardiac tissue engineering. Elamparithi A; Punnoose AM; Kuruvilla S Artif Cells Nanomed Biotechnol; 2016 Aug; 44(5):1318-25. PubMed ID: 25960178 [TBL] [Abstract][Full Text] [Related]
57. Nanofibers and Microfibers for Osteochondral Tissue Engineering. Ortega Z; Alemán ME; Donate R Adv Exp Med Biol; 2018; 1058():97-123. PubMed ID: 29691819 [TBL] [Abstract][Full Text] [Related]
58. Harnessing electrospun nanofibers to recapitulate hierarchical fibrous structures of meniscus. Wang X; Zhu J; Sun B; Jin Q; Li H; Xia C; Wang H; Mo X; Wu J J Biomed Mater Res B Appl Biomater; 2021 Feb; 109(2):201-213. PubMed ID: 32761755 [TBL] [Abstract][Full Text] [Related]
59. Fabrication Procedure for a 3D Hollow Nanofibrous Bifurcated-Tubular Scaffold by Conformal Electrospinning. Song JY; Lee HS; Kim DY; Yun HJ; Yi CC; Park SM ACS Macro Lett; 2023 May; 12(5):659-666. PubMed ID: 37155320 [TBL] [Abstract][Full Text] [Related]
60. Investigation of the batch-to-batch inconsistencies of Collagen in PCL-Collagen nanofibers. Dippold D; Cai A; Hardt M; Boccaccini AR; Horch RE; Beier JP; Schubert DW Mater Sci Eng C Mater Biol Appl; 2019 Feb; 95():217-225. PubMed ID: 30573244 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]