BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 31835511)

  • 1. The Dark Side of Microalgae Biotechnology: A Heterotrophic Biorefinery Platform Directed to ω-3 Rich Lipid Production.
    Lopes da Silva T; Moniz P; Silva C; Reis A
    Microorganisms; 2019 Dec; 7(12):. PubMed ID: 31835511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Review on integrated biofuel production from microalgal biomass through the outset of transesterification route: a cascade approach for sustainable bioenergy.
    Karpagam R; Jawaharraj K; Gnanam R
    Sci Total Environ; 2021 Apr; 766():144236. PubMed ID: 33422843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial sources of polyunsaturated fatty acids (PUFAs) and the prospect of organic residues and wastes as growth media for PUFA-producing microorganisms.
    Kothri M; Mavrommati M; Elazzazy AM; Baeshen MN; Moussa TAA; Aggelis G
    FEMS Microbiol Lett; 2020 Mar; 367(5):. PubMed ID: 32053204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microalgal lipids biochemistry and biotechnological perspectives.
    Bellou S; Baeshen MN; Elazzazy AM; Aggeli D; Sayegh F; Aggelis G
    Biotechnol Adv; 2014 Dec; 32(8):1476-93. PubMed ID: 25449285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodiesel production by various oleaginous microorganisms from organic wastes.
    Cho HU; Park JM
    Bioresour Technol; 2018 May; 256():502-508. PubMed ID: 29478783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sustainable production of eicosapentaenoic acid-rich oil from microalgae: Towards an algal biorefinery.
    Sivakumar R; Sachin S; Priyadarshini R; Ghosh S
    J Appl Microbiol; 2022 Jun; 132(6):4170-4185. PubMed ID: 35238451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production.
    Adarme-Vega TC; Lim DK; Timmins M; Vernen F; Li Y; Schenk PM
    Microb Cell Fact; 2012 Jul; 11():96. PubMed ID: 22830315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From agro-industrial wastes to single cell oils: a step towards prospective biorefinery.
    Diwan B; Parkhey P; Gupta P
    Folia Microbiol (Praha); 2018 Sep; 63(5):547-568. PubMed ID: 29687420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dark fermentation and microalgae cultivation coupled systems: Outlook and challenges.
    Lacroux J; Llamas M; Dauptain K; Avila R; Steyer JP; van Lis R; Trably E
    Sci Total Environ; 2023 Mar; 865():161136. PubMed ID: 36587699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterotrophic microalgae cultivation to synergize biodiesel production with waste remediation: progress and perspectives.
    Venkata Mohan S; Rohit MV; Chiranjeevi P; Chandra R; Navaneeth B
    Bioresour Technol; 2015 May; 184():169-178. PubMed ID: 25497058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microalgae-based biorefinery--from biofuels to natural products.
    Yen HW; Hu IC; Chen CY; Ho SH; Lee DJ; Chang JS
    Bioresour Technol; 2013 May; 135():166-74. PubMed ID: 23206809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of microalgal polyunsaturated fatty acid oil on body weight and lipid accumulation in the liver of C57BL/6 mice fed a high fat diet.
    Go RE; Hwang KA; Park GT; Lee HM; Lee GA; Kim CW; Jeon SY; Seo JW; Hong WK; Choi KC
    J Biomed Res; 2016 May; 30(3):234-42. PubMed ID: 27533934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemistry and Biotechnology of Lipid Accumulation in the Microalga
    Xu Y
    J Agric Food Chem; 2022 Sep; 70(37):11500-11509. PubMed ID: 36083864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microalgal bioenergy production under zero-waste biorefinery approach: Recent advances and future perspectives.
    Mishra S; Roy M; Mohanty K
    Bioresour Technol; 2019 Nov; 292():122008. PubMed ID: 31466819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microalgae as a raw material for biofuels production.
    Gouveia L; Oliveira AC
    J Ind Microbiol Biotechnol; 2009 Feb; 36(2):269-74. PubMed ID: 18982369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodiesel Production From Lignocellulosic Biomass Using Oleaginous Microbes: Prospects for Integrated Biofuel Production.
    Chintagunta AD; Zuccaro G; Kumar M; Kumar SPJ; Garlapati VK; Postemsky PD; Kumar NSS; Chandel AK; Simal-Gandara J
    Front Microbiol; 2021; 12():658284. PubMed ID: 34475852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sustainable biorefinery concept for biofuel production through holistic volarization of food waste.
    Patel A; Hrůzová K; Rova U; Christakopoulos P; Matsakas L
    Bioresour Technol; 2019 Dec; 294():122247. PubMed ID: 31683456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autotrophic vs. Heterotrophic Cultivation of the Marine Diatom
    Cupo A; Landi S; Morra S; Nuzzo G; Gallo C; Manzo E; Fontana A; d'Ippolito G
    Mar Drugs; 2021 Jun; 19(7):. PubMed ID: 34201453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil.
    Ryckebosch E; Bruneel C; Termote-Verhalle R; Goiris K; Muylaert K; Foubert I
    Food Chem; 2014 Oct; 160():393-400. PubMed ID: 24799253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biorefinery of microalgae - opportunities and constraints for different production scenarios.
    Hariskos I; Posten C
    Biotechnol J; 2014 Jun; 9(6):739-52. PubMed ID: 24838815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.