These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 31835591)

  • 1. The Tribo-Fatigue Damage Transition and Mapping for Wheel Material under Rolling-Sliding Contact Condition.
    He C; Liu J; Wang W; Liu Q
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31835591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of Contact Stress on Surface Microstructure and Wear Property of D2/U71Mn Wheel-Rail Material.
    Liu CP; Zhao XJ; Liu PT; Pan JZ; Ren RM
    Materials (Basel); 2019 Oct; 12(19):. PubMed ID: 31597274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Molybdenum Addition on Rolling Contact Fatigue of Locomotive Wheels under Rolling-Sliding Condition.
    Wang Y; Xiang P; Ding H; Wang W; Zou Q; Liu X; Guo J; Liu Q
    Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 32992831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Stress Intensity Factor on Rail Fatigue Crack Propagation by Finite Element Method.
    Gao R; Liu M; Wang B; Wang Y; Shao W
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of wheel/rail contact conditions on the microstructure and hardness of railway wheels.
    Molyneux-Berry P; Davis C; Bevan A
    ScientificWorldJournal; 2014; 2014():209752. PubMed ID: 24526883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on Wear and Fatigue Performance of Two Types of High-Speed Railway Wheel Materials at Different Ambient Temperatures.
    Ma L; Wang W; Guo J; Liu Q
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32150910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Surface Ultrasonic Rolling Treatment on Rolling Contact Fatigue Life of D2 Wheel Steel.
    Liu P; Lin Z; Liu C; Zhao X; Ren R
    Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33260491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stress intensity factors for a vertical surface crack in polyethylene subject to rolling and sliding contact.
    Eberhardt AW; Kim BS
    J Biomech Eng; 1998 Dec; 120(6):778-83. PubMed ID: 10412463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of axle-wheel interface on ultrasonic testing of fatigue cracks in wheelset.
    Makino K; Biwa S
    Ultrasonics; 2013 Jan; 53(1):239-48. PubMed ID: 22795911
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Fukagai S; Watson M; Brunskill HP; Hunter AK; Marshall MB; Lewis R
    Proc Math Phys Eng Sci; 2021 Nov; 477(2255):20210442. PubMed ID: 35474957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An observation on subsurface defects of ultra high molecular weight polyethylene due to rolling contact.
    Ohashi M; Tomita N; Ikada Y; Ikeuchi K; Motoike T
    Biomed Mater Eng; 1996; 6(6):441-51. PubMed ID: 9138654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental Investigation on the Wear and Damage Behaviors of Machined Wheel-Rail Materials under Dry Sliding Conditions.
    Liu P; Quan Y; Wan J; Yu L
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33498672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wear and damage at the bonded interface between tooth enamel and resin composite.
    Xu Z; Xiong Y; Yu P; Zhao P; Arola D; Gao S
    J Dent; 2019 Apr; 83():40-49. PubMed ID: 30797040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fretting Wear Behavior and Damage Mechanisms of Inconel X-750 Alloy in Dry Contact Condition.
    Rustamov I; Zhang G; Skotnikova M; Wang Y; Wang Z
    J Tribol; 2019 Apr; 141(4):0416031-416038. PubMed ID: 30837780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Threshold Maps for Inclusion-Initiated Micro-Cracks and White Etching Areas in Bearing Steel: The Role of Impact Loading and Surface Sliding.
    Bruce T; Long H; Dwyer-Joyce RS
    Tribol Lett; 2018; 66(3):111. PubMed ID: 30956513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applicability Evaluation of Surface and Sub-Surface Defects for Railway Wheel Material Using Induced Alternating Current Potential Drops.
    Kwon SJ; Seo JW; Kim MS; Ham YS
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclic compressive loading results in fatigue cracks in ultra high molecular weight polyethylene.
    Pruitt L; Koo J; Rimnac CM; Suresh S; Wright TM
    J Orthop Res; 1995 Jan; 13(1):143-6. PubMed ID: 7853097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wear Behavior of Ductile Iron Wheel Material Used for Rail-Transit Vehicles under Dry Sliding Conditions.
    Tong L; Zou Q; Jie J; Li T; Wang Z
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32545535
    [No Abstract]   [Full Text] [Related]  

  • 19. Prevention of fatigue cracks in ultrahigh molecular weight polyethylene joint components by the addition of vitamin E.
    Tomita N; Kitakura T; Onmori N; Ikada Y; Aoyama E
    J Biomed Mater Res; 1999; 48(4):474-8. PubMed ID: 10421689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Evolution of White Etching Cracks (WECs) in Rolling Contact Fatigue-Tested 100Cr6 Steel.
    Richardson AD; Evans MH; Wang L; Wood RJK; Ingram M; Meuth B
    Tribol Lett; 2018; 66(1):6. PubMed ID: 31983861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.