These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 31835777)

  • 1. Low-Cost 2D Index and Straightness Measurement System Based on a CMOS Image Sensor.
    Küng A; Bircher BA; Meli F
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31835777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applications of the Integrated High-Performance CMOS Image Sensor to Range Finders - from Optical Triangulation to the Automotive Field.
    Wu JH; Pen CC; Jiang JA
    Sensors (Basel); 2008 Mar; 8(3):1719-1739. PubMed ID: 27879789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A heterodyne straightness and displacement measuring interferometer with laser beam drift compensation for long-travel linear stage metrology.
    Chen B; Cheng L; Yan L; Zhang E; Lou Y
    Rev Sci Instrum; 2017 Mar; 88(3):035114. PubMed ID: 28372378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser straightness interferometer system with rotational error compensation and simultaneous measurement of six degrees of freedom error parameters.
    Chen B; Xu B; Yan L; Zhang E; Liu Y
    Opt Express; 2015 Apr; 23(7):9052-73. PubMed ID: 25968740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a compact, fiber-coupled, six degree-of-freedom measurement system for precision linear stage metrology.
    Yu X; Gillmer SR; Woody SC; Ellis JD
    Rev Sci Instrum; 2016 Jun; 87(6):065109. PubMed ID: 27370499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a straightness measurement and compensation system with multiple right-angle reflectors and a lead zirconate titanate-based compensation stage.
    Liu CH; Chen JH; Teng YF
    Rev Sci Instrum; 2009 Nov; 80(11):115105. PubMed ID: 19947755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Splicing Measurement and Compensation of Straightness Errors for Ultra-Precision Guideways.
    Zhou L; Zheng N; Li J; Yuan Z; Wang J; Fang F; Xu Q
    Micromachines (Basel); 2023 Aug; 14(9):. PubMed ID: 37763833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 0.0014 mm
    Yang W; Jiang H; Wang Z
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31013907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laser homodyne straightness interferometer with simultaneous measurement of six degrees of freedom motion errors for precision linear stage metrology.
    Lou Y; Yan L; Chen B; Zhang S
    Opt Express; 2017 Mar; 25(6):6805-6821. PubMed ID: 28381023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional straightness measurement based on optical knife-edge sensing.
    Wang C; Zhong F; Ellis JD
    Rev Sci Instrum; 2017 Sep; 88(9):095109. PubMed ID: 28964181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A laser interferometer for measuring straightness and its position based on heterodyne interferometry.
    Chen B; Zhang E; Yan L; Li C; Tang W; Feng Q
    Rev Sci Instrum; 2009 Nov; 80(11):115113. PubMed ID: 19947763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low cost, compact 4-DOF measurement system with active compensation of beam angular drift error.
    Huang Y; Fan KC; Sun W; Liu S
    Opt Express; 2018 Jun; 26(13):17185-17198. PubMed ID: 30119533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of a Measurement System for Six-Degree-of-Freedom Geometric Errors of a Linear Guide of a Machine Tool.
    Liu CS; Lai JJ; Luo YT
    Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30577462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward CMOS image sensor based glucose monitoring.
    Devadhasan JP; Kim S
    Analyst; 2012 Sep; 137(17):3917-20. PubMed ID: 22764059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous measurement of linear and transverse displacements by laser self-mixing.
    Ottonelli S; Dabbicco M; De Lucia F; Scamarcio G
    Appl Opt; 2009 Mar; 48(9):1784-9. PubMed ID: 19305478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical and Electric Multifunctional CMOS Image Sensors for On-Chip Biosensing Applications.
    Tokuda T; Noda T; Sasagawa K; Ohta J
    Materials (Basel); 2010 Dec; 4(1):84-102. PubMed ID: 28879978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CMOS image sensors as an efficient platform for glucose monitoring.
    Devadhasan JP; Kim S; Choi CS
    Analyst; 2013 Oct; 138(19):5679-84. PubMed ID: 23900281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time biochemical sensor based on Raman scattering with CMOS contact imaging.
    Muyun Cao ; Yuhua Li ; Yadid-Pecht O
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():7950-3. PubMed ID: 26738136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate and Cost-Effective Micro Sun Sensor based on CMOS Black Sun Effect.
    Saleem R; Lee S
    Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30759806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organic-on-silicon complementary metal-oxide-semiconductor colour image sensors.
    Lim SJ; Leem DS; Park KB; Kim KS; Sul S; Na K; Lee GH; Heo CJ; Lee KH; Bulliard X; Satoh R; Yagi T; Ro T; Im D; Jung J; Lee M; Lee TY; Han MG; Jin YW; Lee S
    Sci Rep; 2015 Jan; 5():7708. PubMed ID: 25578322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.