These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 31835803)

  • 1. In Vitro Evaluation of Different Dietary Methane Mitigation Strategies.
    Chagas JC; Ramin M; Krizsan SJ
    Animals (Basel); 2019 Dec; 9(12):. PubMed ID: 31835803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of the macroalga Asparagopsis taxiformis and oregano leaves on methane emission, rumen fermentation, and lactational performance of dairy cows.
    Stefenoni HA; Räisänen SE; Cueva SF; Wasson DE; Lage CFA; Melgar A; Fetter ME; Smith P; Hennessy M; Vecchiarelli B; Bender J; Pitta D; Cantrell CL; Yarish C; Hristov AN
    J Dairy Sci; 2021 Apr; 104(4):4157-4173. PubMed ID: 33516546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the effect of phenolic compounds as hydrogen acceptors when ruminal methanogenesis is inhibited in vitro - Part 2. Dairy goats.
    Romero P; Huang R; Jiménez E; Palma-Hidalgo JM; Ungerfeld EM; Popova M; Morgavi DP; Belanche A; Yáñez-Ruiz DR
    Animal; 2023 May; 17(5):100789. PubMed ID: 37087998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effectiveness of nitrate addition and increased oil content as methane mitigation strategies for beef cattle fed two contrasting basal diets.
    Troy SM; Duthie CA; Hyslop JJ; Roehe R; Ross DW; Wallace RJ; Waterhouse A; Rooke JA
    J Anim Sci; 2015 Apr; 93(4):1815-23. PubMed ID: 26020202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in in vitro gas and methane production from rumen fluid from dairy cows during adaptation to feed additives in vivo.
    Klop G; van Laar-van Schuppen S; Pellikaan WF; Hendriks WH; Bannink A; Dijkstra J
    Animal; 2017 Apr; 11(4):591-599. PubMed ID: 27748233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of 3-nitrooxypropanol on enteric methane emissions of feedlot cattle fed with a tempered barley-based diet with canola oil.
    Almeida AK; Cowley F; McMeniman JP; Karagiannis A; Walker N; Tamassia LFM; McGrath JJ; Hegarty RS
    J Anim Sci; 2023 Jan; 101():. PubMed ID: 37429613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rumen microbial degradation of bromoform from red seaweed (Asparagopsis taxiformis) and the impact on rumen fermentation and methanogenic archaea.
    Romero P; Belanche A; Jiménez E; Hueso R; Ramos-Morales E; Salwen JK; Kebreab E; Yáñez-Ruiz DR
    J Anim Sci Biotechnol; 2023 Nov; 14(1):133. PubMed ID: 37907951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of the macroalgae Asparagopsis taxiformis on methane production and rumen microbiome assemblage.
    Roque BM; Brooke CG; Ladau J; Polley T; Marsh LJ; Najafi N; Pandey P; Singh L; Kinley R; Salwen JK; Eloe-Fadrosh E; Kebreab E; Hess M
    Anim Microbiome; 2019 Feb; 1(1):3. PubMed ID: 33499933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Screening macroalgae for mitigation of enteric methane in vitro.
    Wasson DE; Stefenoni H; Cueva SF; Lage C; Räisänen SE; Melgar A; Fetter M; Hennessy M; Narayan K; Indugu N; Pitta D; Yarish C; Hristov AN
    Sci Rep; 2023 Jun; 13(1):9835. PubMed ID: 37330586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3-Nitrooxypropanol supplementation of a forage diet decreased enteric methane emissions from beef cattle without affecting feed intake and apparent total-tract digestibility.
    Alemu AW; Gruninger RJ; Zhang XM; O'Hara E; Kindermann M; Beauchemin KA
    J Anim Sci; 2023 Jan; 101():. PubMed ID: 36617172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Rumen Fermentation and Microbial Adaptation to Three Red Seaweeds Using the Rumen Simulation Technique.
    Terry SA; Krüger AM; Lima PMT; Gruninger RJ; Abbott DW; Beauchemin KA
    Animals (Basel); 2023 May; 13(10):. PubMed ID: 37238073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of sunflower oil infusions of Asparagopsis taxiformis on in vitro ruminal methane production and biohydrogenation of polyunsaturated fatty acids.
    Sena F; Portugal PV; Dentinho MT; Paulos K; Costa C; Soares DM; Oliveira A; Ramos H; Alves SP; Santos-Silva J; Bessa RJB
    J Dairy Sci; 2024 Mar; 107(3):1472-1484. PubMed ID: 37944809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying the Impact of Different Dietary Rumen Modulating Strategies on Enteric Methane Emission and Productivity in Ruminant Livestock: A Meta-Analysis.
    Pepeta BN; Hassen A; Tesfamariam EH
    Animals (Basel); 2024 Feb; 14(5):. PubMed ID: 38473148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating the effect of phenolic compounds as hydrogen acceptors when ruminal methanogenesis is inhibited in vitro - Part 1. Dairy cows.
    Huang R; Romero P; Belanche A; Ungerfeld EM; Yanez-Ruiz D; Morgavi DP; Popova M
    Animal; 2023 May; 17(5):100788. PubMed ID: 37087996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimethanogenic effects of nitrate supplementation in cattle: A meta-analysis.
    Feng XY; Dijkstra J; Bannink A; van Gastelen S; France J; Kebreab E
    J Dairy Sci; 2020 Dec; 103(12):11375-11385. PubMed ID: 32981733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corn silage-based diet supplemented with increasing amounts of linseed oil: Effects on methane production, rumen fermentation, nutrient digestibility, nitrogen utilization, and milk production of dairy cows.
    Hassanat F; Benchaar C
    J Dairy Sci; 2021 May; 104(5):5375-5390. PubMed ID: 33663815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of hydrolyzable tannin with or without condensed tannin on methane emissions, nitrogen use, and performance of beef cattle fed a high-forage diet.
    Aboagye IA; Oba M; Castillo AR; Koenig KM; Iwaasa AD; Beauchemin KA
    J Anim Sci; 2018 Dec; 96(12):5276-5286. PubMed ID: 30169710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of marine and freshwater macroalgae on in vitro total gas and methane production.
    Machado L; Magnusson M; Paul NA; de Nys R; Tomkins N
    PLoS One; 2014; 9(1):e85289. PubMed ID: 24465524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel oxidising feed additives reduce in vitro methane emissions using the rumen simulation technique.
    O'Donnell C; Thorn C; Roskam E; Friel R; Kirwan SF; Waters SM; O'Flaherty V
    Sci Total Environ; 2024 May; 926():171808. PubMed ID: 38508273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global Warming and Dairy Cattle: How to Control and Reduce Methane Emission.
    Bačėninaitė D; Džermeikaitė K; Antanaitis R
    Animals (Basel); 2022 Oct; 12(19):. PubMed ID: 36230428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.