These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 31835807)

  • 1. Modeling and Analysis of a Direct Time-of-Flight Sensor Architecture for LiDAR Applications.
    Padmanabhan P; Zhang C; Charbon E
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31835807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A dToF Ranging Sensor with Accurate Photon Detector Measurements for LiDAR Applications.
    Yu H; Wang L; Xu J; Chiang PY
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Background Light Rejection in SPAD-Based LiDAR Sensors by Adaptive Photon Coincidence Detection.
    Beer M; Haase JF; Ruskowski J; Kokozinski R
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30544791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Guided Direct Time-of-Flight Lidar Using Stereo Cameras for Enhanced Laser Power Efficiency.
    Taneski F; Gyongy I; Al Abbas T; Henderson RK
    Sensors (Basel); 2023 Nov; 23(21):. PubMed ID: 37960642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical Model of SPAD-Based Direct Time-of-Flight Flash LIDAR CMOS Image Sensors.
    Tontini A; Gasparini L; Perenzoni M
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32932624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ambient light rejection method for multiphoton coincidence detection in single-photon avalanche diode-based DToF sensors.
    Zhou H; Chen Q; Sun M; Xu J; Nie K
    Appl Opt; 2023 Mar; 62(7):1807-1814. PubMed ID: 37132929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A CMOS SPAD Imager with Collision Detection and 128 Dynamically Reallocating TDCs for Single-Photon Counting and 3D Time-of-Flight Imaging.
    Zhang C; Lindner S; Antolovic IM; Wolf M; Charbon E
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30453648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SPADs and SiPMs Arrays for Long-Range High-Speed Light Detection and Ranging (LiDAR).
    Villa F; Severini F; Madonini F; Zappa F
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34206130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-Photon Avalanche Diode with Enhanced NIR-Sensitivity for Automotive LIDAR Systems.
    Takai I; Matsubara H; Soga M; Ohta M; Ogawa M; Yamashita T
    Sensors (Basel); 2016 Mar; 16(4):459. PubMed ID: 27043569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small Imaging Depth LIDAR and DCNN-Based Localization for Automated Guided Vehicle.
    Ito S; Hiratsuka S; Ohta M; Matsubara H; Ogawa M
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29320434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-laser source interference suppression using the time-coding method for SPAD-based flash DToF systems.
    Sun M; Wang H; Xu J; Nie K
    Appl Opt; 2024 Apr; 63(12):3349-3358. PubMed ID: 38856487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing LiDAR performance using threshold photon-number-resolving detection.
    Wu M; Zhao X; Chen R; Zhang L; He W; Chen Q
    Opt Express; 2024 Jan; 32(2):2574-2589. PubMed ID: 38297783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spot Tracking and TDC Sharing in SPAD Arrays for TOF LiDAR.
    Sesta V; Severini F; Villa F; Lussana R; Zappa F; Nakamuro K; Matsui Y
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33922102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subsurface fluorescence time-of-flight imaging using a large-format single-photon avalanche diode sensor for tumor depth assessment.
    Petusseau AF; Streeter SS; Ulku A; Feng Y; Samkoe KS; Bruschini C; Charbon E; Pogue BW; Bruza P
    J Biomed Opt; 2024 Jan; 29(1):016004. PubMed ID: 38235320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human activity recognition using a single-photon direct time-of-flight sensor.
    Mora-Martín G; Scholes S; Henderson RK; Leach J; Gyongy I
    Opt Express; 2024 May; 32(10):16645-16656. PubMed ID: 38858865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-Ground Vineyard Reconstruction Using a LiDAR-Based Automated System.
    Moreno H; Valero C; Bengochea-Guevara JM; Ribeiro Á; Garrido-Izard M; Andújar D
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32085436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical Evaluation of Signal-to-Noise Ratios for Avalanche- and Single-Photon Avalanche Diodes.
    Buchner A; Hadrath S; Burkard R; Kolb FM; Ruskowski J; Ligges M; Grabmaier A
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33924194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compensation of PVT Variations in ToF Imagers with In-Pixel TDC.
    Vornicu I; Carmona-Galán R; Rodríguez-Vázquez Á
    Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28486405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust 3D Reconstruction of Dynamic Scenes From Single-Photon Lidar Using Beta-Divergences.
    Legros Q; Tachella J; Tobin R; Mccarthy A; Meignen S; Buller GS; Altmann Y; Mclaughlin S; Davies ME
    IEEE Trans Image Process; 2021; 30():1716-1727. PubMed ID: 33382656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical Modelling of SPADs for Time-of-Flight LiDAR.
    Incoronato A; Locatelli M; Zappa F
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34209114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.