These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
399 related articles for article (PubMed ID: 31836191)
1. Preserving the CTLA-4 Checkpoint for Safer and More Effective Cancer Immunotherapy. Liu Y; Zheng P Trends Pharmacol Sci; 2020 Jan; 41(1):4-12. PubMed ID: 31836191 [TBL] [Abstract][Full Text] [Related]
3. Post-immunotherapy CTLA-4 Ig treatment improves antitumor efficacy. Mok S; Ağaç Çobanoğlu D; Liu H; Mancuso JJ; Allison JP Proc Natl Acad Sci U S A; 2024 Jul; 121(27):e2404661121. PubMed ID: 38923991 [TBL] [Abstract][Full Text] [Related]
4. Uncoupling therapeutic from immunotherapy-related adverse effects for safer and effective anti-CTLA-4 antibodies in CTLA4 humanized mice. Du X; Liu M; Su J; Zhang P; Tang F; Ye P; Devenport M; Wang X; Zhang Y; Liu Y; Zheng P Cell Res; 2018 Apr; 28(4):433-447. PubMed ID: 29463898 [TBL] [Abstract][Full Text] [Related]
5. Hijacking antibody-induced CTLA-4 lysosomal degradation for safer and more effective cancer immunotherapy. Zhang Y; Du X; Liu M; Tang F; Zhang P; Ai C; Fields JK; Sundberg EJ; Latinovic OS; Devenport M; Zheng P; Liu Y Cell Res; 2019 Aug; 29(8):609-627. PubMed ID: 31267017 [TBL] [Abstract][Full Text] [Related]
6. Poxvirus-based active immunotherapy synergizes with CTLA-4 blockade to increase survival in a murine tumor model by improving the magnitude and quality of cytotoxic T cells. Foy SP; Mandl SJ; dela Cruz T; Cote JJ; Gordon EJ; Trent E; Delcayre A; Breitmeyer J; Franzusoff A; Rountree RB Cancer Immunol Immunother; 2016 May; 65(5):537-49. PubMed ID: 26961085 [TBL] [Abstract][Full Text] [Related]
7. Targeting the tumor microenvironment to overcome immune checkpoint blockade therapy resistance. Li Y; Liu J; Gao L; Liu Y; Meng F; Li X; Qin FX Immunol Lett; 2020 Apr; 220():88-96. PubMed ID: 30885690 [TBL] [Abstract][Full Text] [Related]
8. A reappraisal of CTLA-4 checkpoint blockade in cancer immunotherapy. Du X; Tang F; Liu M; Su J; Zhang Y; Wu W; Devenport M; Lazarski CA; Zhang P; Wang X; Ye P; Wang C; Hwang E; Zhu T; Xu T; Zheng P; Liu Y Cell Res; 2018 Apr; 28(4):416-432. PubMed ID: 29472691 [TBL] [Abstract][Full Text] [Related]
9. Immune checkpoint Ab enhances the antigen-specific anti-tumor effects by modulating both dendritic cells and regulatory T lymphocytes. Sun NY; Chen YL; Lin HW; Chiang YC; Chang CF; Tai YJ; Chen CA; Sun WZ; Chien CL; Cheng WF Cancer Lett; 2019 Mar; 444():20-34. PubMed ID: 30543813 [TBL] [Abstract][Full Text] [Related]
10. Expansion of tumor-associated Treg cells upon disruption of a CTLA-4-dependent feedback loop. Marangoni F; Zhakyp A; Corsini M; Geels SN; Carrizosa E; Thelen M; Mani V; Prüßmann JN; Warner RD; Ozga AJ; Di Pilato M; Othy S; Mempel TR Cell; 2021 Jul; 184(15):3998-4015.e19. PubMed ID: 34157302 [TBL] [Abstract][Full Text] [Related]
11. Regulatory T cells: a potential target in cancer immunotherapy. Shitara K; Nishikawa H Ann N Y Acad Sci; 2018 Apr; 1417(1):104-115. PubMed ID: 29566262 [TBL] [Abstract][Full Text] [Related]
12. Targeting cytotoxic lymphocyte antigen 4 (CTLA-4) in breast cancer. Jama M; Tabana Y; Barakat KH Eur J Med Res; 2024 Jul; 29(1):353. PubMed ID: 38956700 [TBL] [Abstract][Full Text] [Related]
13. Cancer immunotherapy with check point inhibitor can cause autoimmune adverse events due to loss of Treg homeostasis. Kumar P; Saini S; Prabhakar BS Semin Cancer Biol; 2020 Aug; 64():29-35. PubMed ID: 30716481 [TBL] [Abstract][Full Text] [Related]
14. Advances of immune-checkpoint inhibition of CTLA-4 in pancreatic cancer. Ni R; Hu Z; Tao R Biomed Pharmacother; 2024 Oct; 179():117430. PubMed ID: 39260322 [TBL] [Abstract][Full Text] [Related]
15. Tumor-conditional anti-CTLA4 uncouples antitumor efficacy from immunotherapy-related toxicity. Pai CS; Simons DM; Lu X; Evans M; Wei J; Wang YH; Chen M; Huang J; Park C; Chang A; Wang J; Westmoreland S; Beam C; Banach D; Bowley D; Dong F; Seagal J; Ritacco W; Richardson PL; Mitra S; Lynch G; Bousquet P; Mankovich J; Kingsbury G; Fong L J Clin Invest; 2019 Jan; 129(1):349-363. PubMed ID: 30530991 [TBL] [Abstract][Full Text] [Related]
16. Immune checkpoint blockade therapy for cancer: An overview of FDA-approved immune checkpoint inhibitors. Hargadon KM; Johnson CE; Williams CJ Int Immunopharmacol; 2018 Sep; 62():29-39. PubMed ID: 29990692 [TBL] [Abstract][Full Text] [Related]
17. New insight in endocrine-related adverse events associated to immune checkpoint blockade. Elia G; Ferrari SM; Galdiero MR; Ragusa F; Paparo SR; Ruffilli I; Varricchi G; Fallahi P; Antonelli A Best Pract Res Clin Endocrinol Metab; 2020 Jan; 34(1):101370. PubMed ID: 31983543 [TBL] [Abstract][Full Text] [Related]
19. A Systematic Review of Immunotherapy in Urologic Cancer: Evolving Roles for Targeting of CTLA-4, PD-1/PD-L1, and HLA-G. Carosella ED; Ploussard G; LeMaoult J; Desgrandchamps F Eur Urol; 2015 Aug; 68(2):267-79. PubMed ID: 25824720 [TBL] [Abstract][Full Text] [Related]
20. Targeting CTLA-4 in cancer: Is it the ideal companion for PD-1 blockade immunotherapy combinations? De Silva P; Aiello M; Gu-Trantien C; Migliori E; Willard-Gallo K; Solinas C Int J Cancer; 2021 Jul; 149(1):31-41. PubMed ID: 33252786 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]