These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 31836200)

  • 1. Microdroplet-Assisted Screening of Biomolecule Production for Metabolic Engineering Applications.
    Bowman EK; Alper HS
    Trends Biotechnol; 2020 Jul; 38(7):701-714. PubMed ID: 31836200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enabling tools for high-throughput detection of metabolites: Metabolic engineering and directed evolution applications.
    Lin JL; Wagner JM; Alper HS
    Biotechnol Adv; 2017 Dec; 35(8):950-970. PubMed ID: 28723577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emerging platforms for high-throughput enzymatic bioassays.
    Shao F; Lee PW; Li H; Hsieh K; Wang TH
    Trends Biotechnol; 2023 Jan; 41(1):120-133. PubMed ID: 35863950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent progress in high-throughput droplet screening and sorting for bioanalysis.
    Sun G; Qu L; Azi F; Liu Y; Li J; Lv X; Du G; Chen J; Chen CH; Liu L
    Biosens Bioelectron; 2023 Apr; 225():115107. PubMed ID: 36731396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence-Activated Droplet Sorting for Single-Cell Directed Evolution.
    Vallejo D; Nikoomanzar A; Paegel BM; Chaput JC
    ACS Synth Biol; 2019 Jun; 8(6):1430-1440. PubMed ID: 31120731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA-aptamers-in-droplets (RAPID) high-throughput screening for secretory phenotypes.
    Abatemarco J; Sarhan MF; Wagner JM; Lin JL; Liu L; Hassouneh W; Yuan SF; Alper HS; Abate AR
    Nat Commun; 2017 Aug; 8(1):332. PubMed ID: 28835641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosensor-enabled droplet microfluidic system for the rapid screening of 3-dehydroshikimic acid produced in Escherichia coli.
    Tu R; Li L; Yuan H; He R; Wang Q
    J Ind Microbiol Biotechnol; 2020 Dec; 47(12):1155-1160. PubMed ID: 32980986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Technology development and instrumentation of a high-throughput and automated microbial microdroplet culture system for microbial evolution and screening].
    Guo X; Wang L; Zhang C; Xing XH
    Sheng Wu Gong Cheng Xue Bao; 2021 Mar; 37(3):991-1003. PubMed ID: 33783163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence coupling strategies in fluorescence-activated droplet sorting (FADS) for ultrahigh-throughput screening of enzymes, metabolites, and antibodies.
    Jiang J; Yang G; Ma F
    Biotechnol Adv; 2023 Sep; 66():108173. PubMed ID: 37169102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-Volume Microfluidic Cell Sorting for Biomedical Applications.
    Warkiani ME; Wu L; Tay AK; Han J
    Annu Rev Biomed Eng; 2015; 17():1-34. PubMed ID: 26194427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Open microfluidics: droplet microarrays as next generation multiwell plates for high throughput screening.
    Strutt R; Xiong B; Abegg VF; Dittrich PS
    Lab Chip; 2024 Feb; 24(5):1064-1075. PubMed ID: 38356285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Droplet-Based Microfluidic High-Throughput Screening of Enzyme Mutant Libraries Secreted by Yarrowia lipolytica.
    Beneyton T; Rossignol T
    Methods Mol Biol; 2021; 2307():205-219. PubMed ID: 33847992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence-Activated Cell Sorting as a Tool for Recombinant Strain Screening.
    Skrekas C; Ferreira R; David F
    Methods Mol Biol; 2022; 2513():39-57. PubMed ID: 35781199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mass Activated Droplet Sorting (MADS) Enables High-Throughput Screening of Enzymatic Reactions at Nanoliter Scale.
    Holland-Moritz DA; Wismer MK; Mann BF; Farasat I; Devine P; Guetschow ED; Mangion I; Welch CJ; Moore JC; Sun S; Kennedy RT
    Angew Chem Int Ed Engl; 2020 Mar; 59(11):4470-4477. PubMed ID: 31868984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidics and microbial engineering.
    Kou S; Cheng D; Sun F; Hsing IM
    Lab Chip; 2016 Feb; 16(3):432-46. PubMed ID: 26758660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parts plus pipes: synthetic biology approaches to metabolic engineering.
    Boyle PM; Silver PA
    Metab Eng; 2012 May; 14(3):223-32. PubMed ID: 22037345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome scale engineering techniques for metabolic engineering.
    Liu R; Bassalo MC; Zeitoun RI; Gill RT
    Metab Eng; 2015 Nov; 32():143-154. PubMed ID: 26453944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of velocity on microdroplet fluorescence quantified by laser-induced fluorescence.
    Vazquez B; Qureshi N; Oropeza-Ramos L; Olguin LF
    Lab Chip; 2014 Sep; 14(18):3550-5. PubMed ID: 25027281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Throughput Raman Flow Cytometry and Beyond.
    Gala de Pablo J; Lindley M; Hiramatsu K; Goda K
    Acc Chem Res; 2021 May; 54(9):2132-2143. PubMed ID: 33788539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput microfluidic droplets in biomolecular analytical system: A review.
    Zhang L; Parvin R; Chen M; Hu D; Fan Q; Ye F
    Biosens Bioelectron; 2023 May; 228():115213. PubMed ID: 36906989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.