These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 3183625)

  • 1. Developmental regulation of the cysteine-rich outer-membrane proteins of murine Chlamydia trachomatis.
    Sardinia LM; Segal E; Ganem D
    J Gen Microbiol; 1988 Apr; 134(4):997-1004. PubMed ID: 3183625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthesis and disulfide cross-linking of outer membrane components during the growth cycle of Chlamydia trachomatis.
    Newhall WJ
    Infect Immun; 1987 Jan; 55(1):162-8. PubMed ID: 3793227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of disulfide-bonded outer membrane proteins during the developmental cycle of Chlamydia psittaci and Chlamydia trachomatis.
    Hatch TP; Miceli M; Sublett JE
    J Bacteriol; 1986 Feb; 165(2):379-85. PubMed ID: 3944054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of protein in host-free reticulate bodies of Chlamydia psittaci and Chlamydia trachomatis.
    Hatch TP; Miceli M; Silverman JA
    J Bacteriol; 1985 Jun; 162(3):938-42. PubMed ID: 3997784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic AMP inhibits protein synthesis in Chlamydia trachomatis at a transcriptional level.
    Kaul R; Tao S; Wenman WM
    Biochim Biophys Acta; 1990 Jun; 1053(1):106-12. PubMed ID: 2163685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of cysteine deprivation on chlamydial differentiation from reproductive to infective life-cycle forms.
    Allan I; Hatch TP; Pearce JH
    J Gen Microbiol; 1985 Dec; 131(12):3171-7. PubMed ID: 3831232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genes required for assembly and function of the protein synthetic system in Chlamydia trachomatis are expressed early in elementary to reticulate body transformation.
    Gérard HC; Whittum-Hudson JA; Hudson AP
    Mol Gen Genet; 1997 Aug; 255(6):637-42. PubMed ID: 9323368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and polypeptide differences between envelopes of infective and reproductive life cycle forms of Chlamydia spp.
    Hatch TP; Allan I; Pearce JH
    J Bacteriol; 1984 Jan; 157(1):13-20. PubMed ID: 6690419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular cloning and sequence analysis of a developmentally regulated cysteine-rich outer membrane protein from Chlamydia trachomatis.
    Clarke IN; Ward ME; Lambden PR
    Gene; 1988 Nov; 71(2):307-14. PubMed ID: 3066701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of immunodominant linear B-cell epitopes within the major outer membrane protein of Chlamydia trachomatis.
    Zhu S; Chen J; Zheng M; Gong W; Xue X; Li W; Zhang L
    Acta Biochim Biophys Sin (Shanghai); 2010 Nov; 42(11):771-8. PubMed ID: 20923859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viability and gene expression in Chlamydia trachomatis during persistent infection of cultured human monocytes.
    Gérard HC; Köhler L; Branigan PJ; Zeidler H; Schumacher HR; Hudson AP
    Med Microbiol Immunol; 1998 Oct; 187(2):115-20. PubMed ID: 9832326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of interferon gamma on Chlamydia trachomatis serovar A and L2 protein expression investigated by two-dimensional gel electrophoresis.
    Shaw AC; Christiansen G; Birkelund S
    Electrophoresis; 1999; 20(4-5):775-80. PubMed ID: 10344247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of outer membrane proteins in Chlamydia trachomatis LGV serovar L2.
    Tanzer RJ; Hatch TP
    J Bacteriol; 2001 Apr; 183(8):2686-90. PubMed ID: 11274132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cysteine-rich outer membrane proteins of Chlamydia trachomatis display compensatory sequence changes between biovariants.
    Allen JE; Cerrone MC; Beatty PR; Stephens RS
    Mol Microbiol; 1990 Sep; 4(9):1543-50. PubMed ID: 2287277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental stage oxidoreductive states of Chlamydia and infected host cells.
    Wang X; Schwarzer C; Hybiske K; Machen TE; Stephens RS
    mBio; 2014 Oct; 5(6):e01924. PubMed ID: 25352618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sigma 54-Regulated Transcription Is Associated with Membrane Reorganization and Type III Secretion Effectors during Conversion to Infectious Forms of Chlamydia trachomatis.
    Soules KR; LaBrie SD; May BH; Hefty PS
    mBio; 2020 Sep; 11(5):. PubMed ID: 32900805
    [No Abstract]   [Full Text] [Related]  

  • 17. The molecular biology and diagnostics of Chlamydia trachomatis.
    Birkelund S
    Dan Med Bull; 1992 Aug; 39(4):304-20. PubMed ID: 1526183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chlamydia spp. development is differentially altered by treatment with the LpxC inhibitor LPC-011.
    Cram ED; Rockey DD; Dolan BP
    BMC Microbiol; 2017 Apr; 17(1):98. PubMed ID: 28438125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface expression, single-channel analysis and membrane topology of recombinant Chlamydia trachomatis Major Outer Membrane Protein.
    Findlay HE; McClafferty H; Ashley RH
    BMC Microbiol; 2005 Jan; 5():5. PubMed ID: 15673471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies of persistent infection by Chlamydia trachomatis serovar K in TPA-differentiated U937 cells and the role of IFN-gamma.
    Nettelnbreker E; Zeidler H; Bartels H; Dreses-Werringloer U; Däubener W; Holtmann H; Köhler L
    J Med Microbiol; 1998 Feb; 47(2):141-9. PubMed ID: 9879957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.