These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 31836379)
1. Suppression of lactate production in fed-batch culture of some lactic acid bacteria with sucrose as the carbon source. Kawai M; Tsuchiya A; Ishida J; Yoda N; Yashiki-Yamasaki S; Katakura Y J Biosci Bioeng; 2020 May; 129(5):535-540. PubMed ID: 31836379 [TBL] [Abstract][Full Text] [Related]
2. Suppression of lactate production by aerobic fed-batch cultures of Lactococcus lactis. Sano A; Takatera M; Kawai M; Ichinose R; Yamasaki-Yashiki S; Katakura Y J Biosci Bioeng; 2020 Oct; 130(4):402-408. PubMed ID: 32669208 [TBL] [Abstract][Full Text] [Related]
3. Suppression of lactate production of Lactobacillus reuteri JCM1112 by co-feeding glycerol with glucose. Ichinose R; Fukuda Y; Yamasaki-Yashiki S; Katakura Y J Biosci Bioeng; 2020 Jan; 129(1):110-115. PubMed ID: 31519396 [TBL] [Abstract][Full Text] [Related]
4. Suppression of lactate production by using sucrose as a carbon source in lactic acid bacteria. Kawai M; Harada R; Yoda N; Yamasaki-Yashiki S; Fukusaki E; Katakura Y J Biosci Bioeng; 2020 Jan; 129(1):47-51. PubMed ID: 31371162 [TBL] [Abstract][Full Text] [Related]
5. Engineering Lactococcus lactis for D-Lactic Acid Production from Starch. Aso Y; Hashimoto A; Ohara H Curr Microbiol; 2019 Oct; 76(10):1186-1192. PubMed ID: 31302724 [TBL] [Abstract][Full Text] [Related]
6. Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio. Garrigues C; Loubiere P; Lindley ND; Cocaign-Bousquet M J Bacteriol; 1997 Sep; 179(17):5282-7. PubMed ID: 9286977 [TBL] [Abstract][Full Text] [Related]
7. Relationships between the use of Embden Meyerhof pathway (EMP) or Phosphoketolase pathway (PKP) and lactate production capabilities of diverse Lactobacillus reuteri strains. Burgé G; Saulou-Bérion C; Moussa M; Allais F; Athes V; Spinnler HE J Microbiol; 2015 Oct; 53(10):702-10. PubMed ID: 26428921 [TBL] [Abstract][Full Text] [Related]
8. Modelling the production of nisin by Lactococcus lactis in fed-batch culture. Lv W; Zhang X; Cong W Appl Microbiol Biotechnol; 2005 Aug; 68(3):322-6. PubMed ID: 15692804 [TBL] [Abstract][Full Text] [Related]
9. Lactate dehydrogenase has no control on lactate production but has a strong negative control on formate production in Lactococcus lactis. Andersen HW; Pedersen MB; Hammer K; Jensen PR Eur J Biochem; 2001 Dec; 268(24):6379-89. PubMed ID: 11737192 [TBL] [Abstract][Full Text] [Related]
10. Analysis of hemin effect on lactate reduction in Lactococcus lactis. Nagayasu M; Wardani AK; Nagahisa K; Shimizu H; Shioya S J Biosci Bioeng; 2007 Jun; 103(6):529-34. PubMed ID: 17630124 [TBL] [Abstract][Full Text] [Related]
11. Co-culture of Lactobacillus delbrueckii and engineered Lactococcus lactis enhances stoichiometric yield of D-lactic acid from whey permeate. Sahoo TK; Jayaraman G Appl Microbiol Biotechnol; 2019 Jul; 103(14):5653-5662. PubMed ID: 31115633 [TBL] [Abstract][Full Text] [Related]
12. Two different pathways for D-xylose metabolism and the effect of xylose concentration on the yield coefficient of L-lactate in mixed-acid fermentation by the lactic acid bacterium Lactococcus lactis IO-1. Tanaka K; Komiyama A; Sonomoto K; Ishizaki A; Hall SJ; Stanbury PF Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):160-7. PubMed ID: 12382058 [TBL] [Abstract][Full Text] [Related]
13. Is the glycolytic flux in Lactococcus lactis primarily controlled by the redox charge? Kinetics of NAD(+) and NADH pools determined in vivo by 13C NMR. Neves AR; Ventura R; Mansour N; Shearman C; Gasson MJ; Maycock C; Ramos A; Santos H J Biol Chem; 2002 Aug; 277(31):28088-98. PubMed ID: 12011086 [TBL] [Abstract][Full Text] [Related]
14. Enhanced production of nisin by co-culture of Lactococcus lactis sub sp. lactis and Yarrowia lipolytica in molasses based medium. Ariana M; Hamedi J J Biotechnol; 2017 Aug; 256():21-26. PubMed ID: 28694185 [TBL] [Abstract][Full Text] [Related]
15. Analysis of the effects of specific growth rate of Lactococcus lactis MG1363 on aerobic metabolism and its application to high-density culture. Ichinose R; Yamasaki-Yashiki S; Katakura Y J Biosci Bioeng; 2023 Aug; 136(2):129-135. PubMed ID: 37301698 [TBL] [Abstract][Full Text] [Related]
16. Lactobacillus reuteri CRL 1100 as starter culture for wheat dough fermentation. Gerez CL; Cuezzo S; Rollán G; Font de Valdez G Food Microbiol; 2008 Apr; 25(2):253-9. PubMed ID: 18206767 [TBL] [Abstract][Full Text] [Related]
17. An integrated process for the production of 1,3-propanediol, lactate and 3-hydroxypropionic acid by an engineered Lactobacillus reuteri. Suppuram P; Ramakrishnan GG; Subramanian R Biosci Biotechnol Biochem; 2019 Apr; 83(4):755-762. PubMed ID: 30582401 [TBL] [Abstract][Full Text] [Related]
18. Lactococcus lactis as a cell factory: a twofold increase in phosphofructokinase activity results in a proportional increase in specific rates of glucose uptake and lactate formation. Papagianni M; Avramidis N Enzyme Microb Technol; 2011 Jul; 49(2):197-202. PubMed ID: 22112409 [TBL] [Abstract][Full Text] [Related]
19. Metabolic characterization of Lactococcus lactis deficient in lactate dehydrogenase using in vivo 13C-NMR. Neves AR; Ramos A; Shearman C; Gasson MJ; Almeida JS; Santos H Eur J Biochem; 2000 Jun; 267(12):3859-68. PubMed ID: 10849005 [TBL] [Abstract][Full Text] [Related]
20. Nisin production of Lactococcus lactis N8 with hemin-stimulated cell respiration in fed-batch fermentation system. Kördikanlıoğlu B; Şimşek Ö; Saris PE Biotechnol Prog; 2015; 31(3):678-85. PubMed ID: 25826783 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]