BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 31836788)

  • 1. A novel and green nanoparticle formation approach to forming low-crystallinity curcumin nanoparticles to improve curcumin's bioaccessibility.
    Ubeyitogullari A; Ciftci ON
    Sci Rep; 2019 Dec; 9(1):19112. PubMed ID: 31836788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vitro Bioaccessibility of Low-Crystallinity Phytosterol Nanoparticles Generated Using Nanoporous Starch Bioaerogels.
    Ubeyitogullari A; Moreau R; Rose DJ; Ciftci ON
    J Food Sci; 2019 Jul; 84(7):1812-1819. PubMed ID: 31218690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of curcumin nanoparticles via solution-enhanced dispersion by supercritical CO2.
    Zhao Z; Xie M; Li Y; Chen A; Li G; Zhang J; Hu H; Wang X; Li S
    Int J Nanomedicine; 2015; 10():3171-81. PubMed ID: 25995627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Green and single-step simultaneous composite starch aerogel formation-high bioavailability curcumin particle formation.
    Alavi F; Ciftci ON
    Int J Biol Macromol; 2024 Apr; 264(Pt 1):129945. PubMed ID: 38311127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Green synthesis of chitosan gum acacia based biodegradable polymeric nanoparticles to enhance curcumin's antioxidant property: an
    Singha A; Kalladka K; Harshitha M; Saha P; Chakraborty G; Maiti B; Satyaprasad AU; Chakraborty A; Sil SK
    J Microencapsul; 2024 Aug; 41(5):390-401. PubMed ID: 38945157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of a novel shell material-Starch-protein-fatty acid ternary nanoparticles on loading levels and in vitro release of curcumin.
    Zheng D; Huang C; Li B; Zhu X; Liu R; Zhao H
    Int J Biol Macromol; 2021 Dec; 192():471-478. PubMed ID: 34634332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro bioaccessibility of novel low-crystallinity phytosterol nanoparticles in non-fat and regular-fat foods.
    Ubeyitogullari A; Ciftci ON
    Food Res Int; 2019 Sep; 123():27-35. PubMed ID: 31284977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of a Soybean Bowman-Birk Inhibitor (BBI) Nanodelivery Carrier To Improve Bioavailability of Curcumin.
    Liu C; Cheng F; Yang X
    J Agric Food Chem; 2017 Mar; 65(11):2426-2434. PubMed ID: 28249113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving curcumin solubility and bioavailability by encapsulation in saponin-coated curcumin nanoparticles prepared using a simple pH-driven loading method.
    Peng S; Li Z; Zou L; Liu W; Liu C; McClements DJ
    Food Funct; 2018 Mar; 9(3):1829-1839. PubMed ID: 29517797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of water dispersed nanoparticles from different polysaccharides and their application in drug release.
    Ayadi F; Bayer IS; Marras S; Athanassiou A
    Carbohydr Polym; 2016 Jan; 136():282-91. PubMed ID: 26572357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of Curcumin Bioavailability by Encapsulation in Sophorolipid-Coated Nanoparticles: An in Vitro and in Vivo Study.
    Peng S; Li Z; Zou L; Liu W; Liu C; McClements DJ
    J Agric Food Chem; 2018 Feb; 66(6):1488-1497. PubMed ID: 29378117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoparticle encapsulation using self-assembly abietic acid to improve oral bioavailability of curcumin.
    Han Y; Zhang H; Zhao H; Fu S; Li R; Wang Z; Wang Y; Lu W; Yang X
    Food Chem; 2024 Mar; 436():137676. PubMed ID: 37832417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of native and modified banana starch nanoparticles as vehicles for curcumin.
    Acevedo-Guevara L; Nieto-Suaza L; Sanchez LT; Pinzon MI; Villa CC
    Int J Biol Macromol; 2018 May; 111():498-504. PubMed ID: 29337095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increasing the bioavailability of curcumin using a green supercritical fluid technology-assisted approach based on simultaneous starch aerogel formation-curcumin impregnation.
    Alavi F; Ciftci ON
    Food Chem; 2024 Apr; 455():139468. PubMed ID: 38850979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved Chemical Stability and Antiproliferative Activities of Curcumin-Loaded Nanoparticles with a Chitosan Chlorogenic Acid Conjugate.
    Fan Y; Yi J; Zhang Y; Yokoyama W
    J Agric Food Chem; 2017 Dec; 65(49):10812-10819. PubMed ID: 29155582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-encapsulation of Epigallocatechin Gallate (EGCG) and Curcumin by Two Proteins-Based Nanoparticles: Role of EGCG.
    Yan X; Zhang X; McClements DJ; Zou L; Liu X; Liu F
    J Agric Food Chem; 2019 Dec; 67(48):13228-13236. PubMed ID: 31610115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyelectrolyte Complex Nanoparticles from Chitosan and Acylated Rapeseed Cruciferin Protein for Curcumin Delivery.
    Wang F; Yang Y; Ju X; Udenigwe CC; He R
    J Agric Food Chem; 2018 Mar; 66(11):2685-2693. PubMed ID: 29451796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of nanoporous aerogels from wheat starch.
    Ubeyitogullari A; Ciftci ON
    Carbohydr Polym; 2016 Aug; 147():125-132. PubMed ID: 27178916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental investigation and oral bioavailability enhancement of nano-sized curcumin by using supercritical anti-solvent process.
    Anwar M; Ahmad I; Warsi MH; Mohapatra S; Ahmad N; Akhter S; Ali A; Ahmad FJ
    Eur J Pharm Biopharm; 2015 Oct; 96():162-72. PubMed ID: 26241925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of a Microreactor to Pharmaceutical Manufacturing: Preparation of Amorphous Curcumin Nanoparticles and Controlling the Crystallinity of Curcumin Nanoparticles by Ultrasonic Treatment.
    Araki K; Yoshizumi M; Kimura S; Tanaka A; Inoue D; Furubayashi T; Sakane T; Enomura M
    AAPS PharmSciTech; 2019 Dec; 21(1):17. PubMed ID: 31811523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.