BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 31836805)

  • 1. Manipulating rod-shaped bacteria with optical tweezers.
    Zhang Z; Kimkes TEP; Heinemann M
    Sci Rep; 2019 Dec; 9(1):19086. PubMed ID: 31836805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal trapping stability of Escherichia coli in oscillating optical tweezers.
    Yadav A; Dutta A; Kumar P; Dahan Y; Aranovich A; Feingold M
    Phys Rev E; 2020 Jun; 101(6-1):062402. PubMed ID: 32688596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rotation of single bacterial cells relative to the optical axis using optical tweezers.
    Carmon G; Feingold M
    Opt Lett; 2011 Jan; 36(1):40-2. PubMed ID: 21209680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Miniaturized optical fiber tweezers for cell separation by optical force.
    Liu S; Li Z; Weng Z; Li Y; Shui L; Jiao Z; Chen Y; Luo A; Xing X; He S
    Opt Lett; 2019 Apr; 44(7):1868-1871. PubMed ID: 30933168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal optical trap for bacterial viability.
    Mirsaidov U; Timp W; Timp K; Mir M; Matsudaira P; Timp G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021910. PubMed ID: 18850868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oriented imaging of 3D subcellular structures in bacterial cells using optical tweezers.
    Carmon G; Fishov I; Feingold M
    Opt Lett; 2012 Feb; 37(3):440-2. PubMed ID: 22297379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic growth chambers with optical tweezers for full spatial single-cell control and analysis of evolving microbes.
    Probst C; Grünberger A; Wiechert W; Kohlheyer D
    J Microbiol Methods; 2013 Dec; 95(3):470-6. PubMed ID: 24041615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermophoretic Tweezers for Low-Power and Versatile Manipulation of Biological Cells.
    Lin L; Peng X; Wei X; Mao Z; Xie C; Zheng Y
    ACS Nano; 2017 Mar; 11(3):3147-3154. PubMed ID: 28230355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of photodamage to Escherichia coli in optical traps.
    Neuman KC; Chadd EH; Liou GF; Bergman K; Block SM
    Biophys J; 1999 Nov; 77(5):2856-63. PubMed ID: 10545383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing DNA-DNA Interactions with a Combination of Quadruple-Trap Optical Tweezers and Microfluidics.
    Brouwer I; King GA; Heller I; Biebricher AS; Peterman EJG; Wuite GJL
    Methods Mol Biol; 2017; 1486():275-293. PubMed ID: 27844432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photonic Crystal Optical Tweezers with High Efficiency for Live Biological Samples and Viability Characterization.
    Jing P; Wu J; Liu GW; Keeler EG; Pun SH; Lin LY
    Sci Rep; 2016 Jan; 6():19924. PubMed ID: 26814808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative measurement of damage caused by 1064-nm wavelength optical trapping of Escherichia coli cells using on-chip single cell cultivation system.
    Ayano S; Wakamoto Y; Yamashita S; Yasuda K
    Biochem Biophys Res Commun; 2006 Nov; 350(3):678-84. PubMed ID: 17027921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subwavelength optical trapping with a fiber-based surface plasmonic lens.
    Liu Y; Stief F; Yu M
    Opt Lett; 2013 Mar; 38(5):721-3. PubMed ID: 23455277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Versatile Quadruple-Trap Optical Tweezers for Dual DNA Experiments.
    Heller I; Laurens N; Vorselen D; Broekmans OD; Biebricher AS; King GA; Brouwer I; Wuite GJL; Peterman EJG
    Methods Mol Biol; 2017; 1486():257-272. PubMed ID: 27844431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring Single Bacterial Viability in Optical Traps with a Power Sweeping Technique.
    Li H; Wang Y; Li Y; Wang W
    Anal Chem; 2022 Oct; 94(40):13921-13926. PubMed ID: 36166663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of Dual Optical Tweezers and Microfluidics for Single-Molecule Studies.
    Bianco PR
    J Vis Exp; 2022 Nov; (189):. PubMed ID: 36468706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution dual-trap optical tweezers with differential detection: instrument design.
    Bustamante C; Chemla YR; Moffitt JR
    Cold Spring Harb Protoc; 2009 Oct; 2009(10):pdb.ip73. PubMed ID: 20147038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas.
    Righini M; Ghenuche P; Cherukulappurath S; Myroshnychenko V; García de Abajo FJ; Quidant R
    Nano Lett; 2009 Oct; 9(10):3387-91. PubMed ID: 19159322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal.
    van Leest T; Caro J
    Lab Chip; 2013 Nov; 13(22):4358-65. PubMed ID: 24057009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Infrared Optical Trapping on Saccharomyces cerevisiae in a Microfluidic System.
    Pilát Z; Jonáš A; Ježek J; Zemánek P
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29144389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.