These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 31836992)

  • 1. Progressive trends in heavy metal ions and dyes adsorption using silk fibroin composites.
    Rastogi S; Kandasubramanian B
    Environ Sci Pollut Res Int; 2020 Jan; 27(1):210-237. PubMed ID: 31836992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of a regenerated silk fibroin film and its adsorbability to azo dyes.
    Song P; Zhang DY; Yao XH; Feng F; Wu GH
    Int J Biol Macromol; 2017 Sep; 102():1066-1072. PubMed ID: 28478052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silk fibroin: a promising bio-material for the treatment of heavy metal-contaminated water, adsorption isotherms, kinetics, and mechanism.
    Pilley S; Kaur H; Hippargi G; Gonde P; Rayalu S
    Environ Sci Pollut Res Int; 2022 Aug; 29(37):56606-56619. PubMed ID: 35347600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of toxic heavy metal lead (II) using chitosan oligosaccharide-graft-maleic anhydride/polyvinyl alcohol/silk fibroin composite.
    P A; K V; M S; T G; K R; P N S; Sukumaran A
    Int J Biol Macromol; 2017 Nov; 104(Pt B):1469-1482. PubMed ID: 28539265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient removal of heavy metal ions and organic dyes with cucurbit [8] uril-functionalized chitosan.
    Li Z; Li L; Hu D; Gao C; Xiong J; Jiang H; Li W
    J Colloid Interface Sci; 2019 Mar; 539():400-413. PubMed ID: 30597286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competitive adsorption of dyes and heavy metals on zeolitic structures.
    Hernández-Montoya V; Pérez-Cruz MA; Mendoza-Castillo DI; Moreno-Virgen MR; Bonilla-Petriciolet A
    J Environ Manage; 2013 Feb; 116():213-21. PubMed ID: 23321372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fe
    Hu Y; Hou C; An J; Fang J; Shi Y; Fan Q; Liu G; Liu Y
    Nanotechnology; 2022 Apr; 33(26):. PubMed ID: 35313285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combinatorial effects of charge characteristics and hydrophobicity of silk fibroin on the sorption and release of charged dyes.
    Wongpanit P; Rujiravanit R
    J Biomater Sci Polym Ed; 2012; 23(9):1199-215. PubMed ID: 21639994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellulose/silk fibroin assisted calcium phosphate growth: Novel biocomposite for dye adsorption.
    Salama A
    Int J Biol Macromol; 2020 Dec; 165(Pt B):1970-1977. PubMed ID: 33086113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosorption of copper, zinc, cadmium and chromium ions from aqueous solution by natural foxtail millet shell.
    Peng SH; Wang R; Yang LZ; He L; He X; Liu X
    Ecotoxicol Environ Saf; 2018 Dec; 165():61-69. PubMed ID: 30193165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic Zr-MOFs nanocomposites for rapid removal of heavy metal ions and dyes from water.
    Huang L; He M; Chen B; Hu B
    Chemosphere; 2018 May; 199():435-444. PubMed ID: 29453070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activated parthenium carbon as an adsorbent for the removal of dyes and heavy metal ions from aqueous solution.
    Rajeshwarisivaraj ; Subburam V
    Bioresour Technol; 2002 Nov; 85(2):205-6. PubMed ID: 12227547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SuFEx modification of silk fibroin silicon aerogel and its adsorption behavior and antibacterial performance.
    Zhu Y; Gu P; Wan H; Zhou S; He J; Li H; Li N; Xu Q; Lu J
    Chemosphere; 2022 Jan; 287(Pt 3):132291. PubMed ID: 34562702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoadsorbents based on conducting polymer nanocomposites with main focus on polyaniline and its derivatives for removal of heavy metal ions/dyes: A review.
    Zare EN; Motahari A; Sillanpää M
    Environ Res; 2018 Apr; 162():173-195. PubMed ID: 29329014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An environmentally-friendly chitosan-lysozyme biocomposite for the effective removal of dyes and heavy metals from aqueous solutions.
    Rathinam K; Singh SP; Arnusch CJ; Kasher R
    Carbohydr Polym; 2018 Nov; 199():506-515. PubMed ID: 30143156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Versatile crosslinking synthesis of an EDTA-modified UiO-66-NH
    Gao Y; Yao L; Zhang S; Yue Q; Yin W
    Environ Pollut; 2023 Jan; 316(Pt 2):120622. PubMed ID: 36370975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of ionic strength on the interfacial viscoelasticity and stability of silk fibroin at the oil/water interface.
    Tang X; Qiao X; Miller R; Sun K
    J Sci Food Agric; 2016 Dec; 96(15):4918-4928. PubMed ID: 27256721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective bioremoval of reactive dye and heavy metals by Aspergillus versicolor.
    Taştan BE; Ertuğrul S; Dönmez G
    Bioresour Technol; 2010 Feb; 101(3):870-6. PubMed ID: 19773159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfonated Pentablock Copolymer Coating of Polypropylene Filters for Dye and Metal Ions Effective Removal by Integrated Adsorption and Filtration Process.
    Filice S; Scuderi V; Libertino S; Zimbone M; Galati C; Spinella N; Gradon L; Falqui L; Scalese S
    Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36233077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recycling of agricultural solid waste, coir pith: removal of anions, heavy metals, organics and dyes from water by adsorption onto ZnCl2 activated coir pith carbon.
    Namasivayam C; Sangeetha D
    J Hazard Mater; 2006 Jul; 135(1-3):449-52. PubMed ID: 16406295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.