BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 3183715)

  • 1. Evidence for two functionally distinct subpopulations of neurons within the rat striatum.
    Nisenbaum ES; Orr WB; Berger TW
    J Neurosci; 1988 Nov; 8(11):4138-50. PubMed ID: 3183715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functionally distinct subpopulations of striatal neurons are differentially regulated by GABAergic and dopaminergic inputs--I. In vivo analysis.
    Nisenbaum ES; Berger TW
    Neuroscience; 1992; 48(3):561-78. PubMed ID: 1318517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functionally distinct subpopulations of striatal neurons are differentially regulated by GABAergic and dopaminergic inputs--II. In vitro analysis.
    Nisenbaum ES; Grace AA; Berger TW
    Neuroscience; 1992; 48(3):579-93. PubMed ID: 1351271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and characterization of striatal cell subtypes using in vivo intracellular recording in rats: I. Basic physiology and response to corticostriatal fiber stimulation.
    Onn SP; Berger TW; Grace AA
    Synapse; 1994 Mar; 16(3):161-80. PubMed ID: 8197579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of striatal cell subtypes using in vivo intracellular recording in rats: II. Membrane factors underlying paired-pulse response profiles.
    Onn SP; Berger TW; Grace AA
    Synapse; 1994 Mar; 16(3):195-210. PubMed ID: 8197582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and characterization of striatal cell subtypes using in vivo intracellular recording and dye-labeling in rats: III. Morphological correlates and compartmental localization.
    Onn SP; Berger TW; Grace AA
    Synapse; 1994 Mar; 16(3):231-54. PubMed ID: 8197584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Basal ganglia and processing of cortical information: functional interactions between trans-striatal and trans-subthalamic circuits in the substantia nigra pars reticulata.
    Kolomiets BP; Deniau JM; Glowinski J; Thierry AM
    Neuroscience; 2003; 117(4):931-8. PubMed ID: 12654344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Striatal nitric oxide signaling regulates the neuronal activity of midbrain dopamine neurons in vivo.
    West AR; Grace AA
    J Neurophysiol; 2000 Apr; 83(4):1796-808. PubMed ID: 10758092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antidromic identification of dopaminergic and other output neurons of the rat substantia nigra.
    Guyenet PG; Aghajanian GK
    Brain Res; 1978 Jul; 150(1):69-84. PubMed ID: 78748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphology and electrophysiological properties of immunocytochemically identified rat dopamine neurons recorded in vitro.
    Grace AA; Onn SP
    J Neurosci; 1989 Oct; 9(10):3463-81. PubMed ID: 2795134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophysiological and pharmacological evidence for the existence of distinct subpopulations of nigrostriatal dopaminergic neuron in the rat.
    Shepard PD; German DC
    Neuroscience; 1988 Nov; 27(2):537-46. PubMed ID: 3217003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional comparison of corticostriatal and thalamostriatal postsynaptic responses in striatal neurons of the mouse.
    Arias-García MA; Tapia D; Laville JA; Calderón VM; Ramiro-Cortés Y; Bargas J; Galarraga E
    Brain Struct Funct; 2018 Apr; 223(3):1229-1253. PubMed ID: 29101523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo induction of striatal long-term potentiation by low-frequency stimulation of the cerebral cortex.
    Charpier S; Mahon S; Deniau JM
    Neuroscience; 1999; 91(4):1209-22. PubMed ID: 10391430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acute nigro-striatal blockade alters cortico-striatal encoding: an in vivo electrophysiological study.
    Prosperetti C; Di Giovanni G; Stefani A; Möller JC; Galati S
    Exp Neurol; 2013 Sep; 247():730-6. PubMed ID: 23537952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The response of non-dopamine neurons in substantia nigra and ventral tegmental area to amphetamine and apomorphine during hypermotility: the striatal influence.
    Olds ME
    Brain Res; 1988 Jun; 452(1-2):237-54. PubMed ID: 3401732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dopaminergic neurons: simultaneous measurements of dopamine release and single-unit activity during stimulation of the medial forebrain bundle.
    Kuhr WG; Wightman RM; Rebec GV
    Brain Res; 1987 Aug; 418(1):122-8. PubMed ID: 3499205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular recording of identified neostriatal patch and matrix spiny cells in a slice preparation preserving cortical inputs.
    Kawaguchi Y; Wilson CJ; Emson PC
    J Neurophysiol; 1989 Nov; 62(5):1052-68. PubMed ID: 2585039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Terminal excitability of the corticostriatal pathway. I. Regulation by dopamine receptor stimulation.
    Garcia-Munoz M; Young SJ; Groves PM
    Brain Res; 1991 Jun; 551(1-2):195-206. PubMed ID: 1913151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transplantation of mesencephalic cell suspension in dopamine-denervated striatum of the rat. II. Effects on corticostriatal transmission.
    Capozzo A; Florio T; Di Loreto S; Adorno D; Scarnati E
    Exp Neurol; 1997 Jul; 146(1):142-50. PubMed ID: 9225747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Action potential timing determines dendritic calcium during striatal up-states.
    Kerr JN; Plenz D
    J Neurosci; 2004 Jan; 24(4):877-85. PubMed ID: 14749432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.