These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 31837155)
21. Signaling in the arbuscular mycorrhizal symbiosis. Harrison MJ Annu Rev Microbiol; 2005; 59():19-42. PubMed ID: 16153162 [TBL] [Abstract][Full Text] [Related]
22. The Lotus japonicus acyl-acyl carrier protein thioesterase FatM is required for mycorrhiza formation and lipid accumulation of Rhizophagus irregularis. Brands M; Wewer V; Keymer A; Gutjahr C; Dörmann P Plant J; 2018 Jul; 95(2):219-232. PubMed ID: 29687516 [TBL] [Abstract][Full Text] [Related]
23. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Parniske M Nat Rev Microbiol; 2008 Oct; 6(10):763-75. PubMed ID: 18794914 [TBL] [Abstract][Full Text] [Related]
24. Nitrogen and carbon/nitrogen dynamics in arbuscular mycorrhiza: the great unknown. Corrêa A; Cruz C; Ferrol N Mycorrhiza; 2015 Oct; 25(7):499-515. PubMed ID: 25681010 [TBL] [Abstract][Full Text] [Related]
25. Arbuscular mycorrhiza formation and its function under elevated atmospheric O Wang S; Augé RM; Toler HD Environ Pollut; 2017 Jul; 226():104-117. PubMed ID: 28411495 [TBL] [Abstract][Full Text] [Related]
26. Conservation and Diversity in Gibberellin-Mediated Transcriptional Responses Among Host Plants Forming Distinct Arbuscular Mycorrhizal Morphotypes. Tominaga T; Miura C; Sumigawa Y; Hirose Y; Yamaguchi K; Shigenobu S; Mine A; Kaminaka H Front Plant Sci; 2021; 12():795695. PubMed ID: 34975984 [TBL] [Abstract][Full Text] [Related]
27. Arbuscular mycorrhiza improve growth, nitrogen uptake, and nitrogen use efficiency in wheat grown under elevated CO2. Zhu X; Song F; Liu S; Liu F Mycorrhiza; 2016 Feb; 26(2):133-40. PubMed ID: 26148451 [TBL] [Abstract][Full Text] [Related]
28. Cross-kingdom lipid transfer in arbuscular mycorrhiza symbiosis and beyond. Keymer A; Gutjahr C Curr Opin Plant Biol; 2018 Aug; 44():137-144. PubMed ID: 29729528 [TBL] [Abstract][Full Text] [Related]
29. Arbuscular Mycorrhizal Symbiosis with Arundo donax Decreases Root Respiration and Increases Both Photosynthesis and Plant Biomass Accumulation. Romero-Munar A; Del-Saz NF; Ribas-Carbó M; Flexas J; Baraza E; Florez-Sarasa I; Fernie AR; Gulías J Plant Cell Environ; 2017 Jul; 40(7):1115-1126. PubMed ID: 28060998 [TBL] [Abstract][Full Text] [Related]
30. Host-related variability in arbuscular mycorrhizal fungal structures in roots of Hedera rhombea, Rubus parvifolius, and Rosa multiflora under controlled conditions. Matekwor Ahulu E; Andoh H; Nonaka M Mycorrhiza; 2007 Mar; 17(2):93-101. PubMed ID: 17111164 [TBL] [Abstract][Full Text] [Related]
31. Myco-heterotroph/epiparasitic plant interactions with ectomycorrhizal and arbuscular mycorrhizal fungi. Leake JR Curr Opin Plant Biol; 2004 Aug; 7(4):422-8. PubMed ID: 15231265 [TBL] [Abstract][Full Text] [Related]
32. Codependency between plant and arbuscular mycorrhizal fungal communities: what is the evidence? Kokkoris V; Lekberg Y; Antunes PM; Fahey C; Fordyce JA; Kivlin SN; Hart MM New Phytol; 2020 Nov; 228(3):828-838. PubMed ID: 32452032 [TBL] [Abstract][Full Text] [Related]
33. Comparison of green and albino individuals of the partially mycoheterotrophic orchid Epipactis helleborine on molecular identities of mycorrhizal fungi, nutritional modes and gene expression in mycorrhizal roots. Suetsugu K; Yamato M; Miura C; Yamaguchi K; Takahashi K; Ida Y; Shigenobu S; Kaminaka H Mol Ecol; 2017 Mar; 26(6):1652-1669. PubMed ID: 28099773 [TBL] [Abstract][Full Text] [Related]
35. Nitrogen isotope fractionation during N uptake via arbuscular mycorrhizal and ectomycorrhizal fungi into grey alder. Schweiger PF J Plant Physiol; 2016 Oct; 205():84-92. PubMed ID: 27639038 [TBL] [Abstract][Full Text] [Related]
36. Chemical identification and functional analysis of apocarotenoids involved in the development of arbuscular mycorrhizal symbiosis. Akiyama K Biosci Biotechnol Biochem; 2007 Jun; 71(6):1405-14. PubMed ID: 17587670 [TBL] [Abstract][Full Text] [Related]
37. Phosphate Suppression of Arbuscular Mycorrhizal Symbiosis Involves Gibberellic Acid Signaling. Nouri E; Surve R; Bapaume L; Stumpe M; Chen M; Zhang Y; Ruyter-Spira C; Bouwmeester H; Glauser G; Bruisson S; Reinhardt D Plant Cell Physiol; 2021 Oct; 62(6):959-970. PubMed ID: 34037236 [TBL] [Abstract][Full Text] [Related]
38. The membrane proteome of Medicago truncatula roots displays qualitative and quantitative changes in response to arbuscular mycorrhizal symbiosis. Abdallah C; Valot B; Guillier C; Mounier A; Balliau T; Zivy M; van Tuinen D; Renaut J; Wipf D; Dumas-Gaudot E; Recorbet G J Proteomics; 2014 Aug; 108():354-68. PubMed ID: 24925269 [TBL] [Abstract][Full Text] [Related]
39. [Response of arbuscular mycorrhizal fungal lipid metabolism to symbiotic signals in mycorrhiza]. Tian L; Li Y; Tian C Wei Sheng Wu Xue Bao; 2016 Jan; 56(1):26-34. PubMed ID: 27305777 [TBL] [Abstract][Full Text] [Related]
40. Expression profiling of fungal genes during arbuscular mycorrhiza symbiosis establishment using direct fluorescent in situ RT-PCR. Seddas-Dozolme PM; Arnould C; Tollot M; Kuznetsova E; Gianinazzi-Pearson V Methods Mol Biol; 2010; 638():137-52. PubMed ID: 20238266 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]