These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 31837192)
1. BGAL1 depletion boosts the level of β-galactosylation of N- and O-glycans in N. benthamiana. Kriechbaum R; Ziaee E; Grünwald-Gruber C; Buscaill P; van der Hoorn RAL; Castilho A Plant Biotechnol J; 2020 Jul; 18(7):1537-1549. PubMed ID: 31837192 [TBL] [Abstract][Full Text] [Related]
2. Reduced paucimannosidic N-glycan formation by suppression of a specific β-hexosaminidase from Nicotiana benthamiana. Shin YJ; Castilho A; Dicker M; Sádio F; Vavra U; Grünwald-Gruber C; Kwon TH; Altmann F; Steinkellner H; Strasser R Plant Biotechnol J; 2017 Feb; 15(2):197-206. PubMed ID: 27421111 [TBL] [Abstract][Full Text] [Related]
3. The production of human glucocerebrosidase in glyco-engineered Nicotiana benthamiana plants. Limkul J; Iizuka S; Sato Y; Misaki R; Ohashi T; Ohashi T; Fujiyama K Plant Biotechnol J; 2016 Aug; 14(8):1682-94. PubMed ID: 26868756 [TBL] [Abstract][Full Text] [Related]
4. Galactose-extended glycans of antibodies produced by transgenic plants. Bakker H; Bardor M; Molthoff JW; Gomord V; Elbers I; Stevens LH; Jordi W; Lommen A; Faye L; Lerouge P; Bosch D Proc Natl Acad Sci U S A; 2001 Feb; 98(5):2899-904. PubMed ID: 11226338 [TBL] [Abstract][Full Text] [Related]
5. Unexpected Arabinosylation after Humanization of Plant Protein Bohlender LL; Parsons J; Hoernstein SNW; Bangert N; Rodríguez-Jahnke F; Reski R; Decker EL Front Bioeng Biotechnol; 2022; 10():838365. PubMed ID: 35252146 [TBL] [Abstract][Full Text] [Related]
6. Engineering of human-type O-glycosylation in Nicotiana benthamiana plants. Strasser R Bioengineered; 2013; 4(4):191-6. PubMed ID: 23147167 [TBL] [Abstract][Full Text] [Related]
7. Glycoengineering tobacco plants to stably express recombinant human erythropoietin with different N-glycan profiles. Kittur FS; Hung CY; Zhu C; Shajahan A; Azadi P; Thomas MD; Pearce JL; Gruber C; Kallolimath S; Xie J Int J Biol Macromol; 2020 Aug; 157():158-169. PubMed ID: 32348856 [TBL] [Abstract][Full Text] [Related]
8. Production and Nguyen KD; Kajiura H; Kamiya R; Yoshida T; Misaki R; Fujiyama K Front Plant Sci; 2023; 14():1215580. PubMed ID: 37615027 [No Abstract] [Full Text] [Related]
9. Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure. Strasser R; Stadlmann J; Schähs M; Stiegler G; Quendler H; Mach L; Glössl J; Weterings K; Pabst M; Steinkellner H Plant Biotechnol J; 2008 May; 6(4):392-402. PubMed ID: 18346095 [TBL] [Abstract][Full Text] [Related]
10. Glyco-engineering for the production of recombinant IgA1 with distinct mucin-type O-glycans in plants. Dicker M; Maresch D; Strasser R Bioengineered; 2016 Nov; 7(6):484-489. PubMed ID: 27333379 [TBL] [Abstract][Full Text] [Related]
11. A genome-edited N. benthamiana line for industrial-scale production of recombinant glycoproteins with targeted N-glycosylation. Kogelmann B; Melnik S; Bogner M; Kallolimath S; Stöger E; Sun L; Strasser R; D'Aoust MA; Lavoie PO; Saxena P; Gach JS; Steinkellner H Biotechnol J; 2024 Jan; 19(1):e2300323. PubMed ID: 37804142 [TBL] [Abstract][Full Text] [Related]
12. Characterization of plants expressing the human β1,4-galactosyltrasferase gene. Schneider J; Castilho A; Pabst M; Altmann F; Gruber C; Strasser R; Gattinger P; Seifert GJ; Steinkellner H Plant Physiol Biochem; 2015 Jul; 92():39-47. PubMed ID: 25900423 [TBL] [Abstract][Full Text] [Related]
13. Multiplexed, targeted gene editing in Nicotiana benthamiana for glyco-engineering and monoclonal antibody production. Li J; Stoddard TJ; Demorest ZL; Lavoie PO; Luo S; Clasen BM; Cedrone F; Ray EE; Coffman AP; Daulhac A; Yabandith A; Retterath AJ; Mathis L; Voytas DF; D'Aoust MA; Zhang F Plant Biotechnol J; 2016 Feb; 14(2):533-42. PubMed ID: 26011187 [TBL] [Abstract][Full Text] [Related]
14. CRISPR/Cas9-mediated knockout of six glycosyltransferase genes in Nicotiana benthamiana for the production of recombinant proteins lacking β-1,2-xylose and core α-1,3-fucose. Jansing J; Sack M; Augustine SM; Fischer R; Bortesi L Plant Biotechnol J; 2019 Feb; 17(2):350-361. PubMed ID: 29969180 [TBL] [Abstract][Full Text] [Related]
15. Metabolic control of recombinant monoclonal antibody N-glycosylation in GS-NS0 cells. Hills AE; Patel A; Boyd P; James DC Biotechnol Bioeng; 2001 Oct; 75(2):239-51. PubMed ID: 11536148 [TBL] [Abstract][Full Text] [Related]
17. Deletion of plant-specific sugar residues in plant N-glycans by repression of GDP-D-mannose 4,6-dehydratase and β-1,2-xylosyltransferase genes. Matsuo K; Kagaya U; Itchoda N; Tabayashi N; Matsumura T J Biosci Bioeng; 2014 Oct; 118(4):448-54. PubMed ID: 24794851 [TBL] [Abstract][Full Text] [Related]
18. N-glycosylation engineering of plants for the biosynthesis of glycoproteins with bisected and branched complex N-glycans. Castilho A; Gattinger P; Grass J; Jez J; Pabst M; Altmann F; Gorfer M; Strasser R; Steinkellner H Glycobiology; 2011 Jun; 21(6):813-23. PubMed ID: 21317243 [TBL] [Abstract][Full Text] [Related]
19. Knockout of Glycosyltransferases in Nicotiana benthamiana by Genome Editing to Improve Glycosylation of Plant-Produced Proteins. Jansing J; Bortesi L Methods Mol Biol; 2022; 2480():241-284. PubMed ID: 35616867 [TBL] [Abstract][Full Text] [Related]