These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 31837193)

  • 1. Improved prediction of brain age using multimodal neuroimaging data.
    Niu X; Zhang F; Kounios J; Liang H
    Hum Brain Mapp; 2020 Apr; 41(6):1626-1643. PubMed ID: 31837193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining magnetoencephalography with magnetic resonance imaging enhances learning of surrogate-biomarkers.
    Engemann DA; Kozynets O; Sabbagh D; Lemaître G; Varoquaux G; Liem F; Gramfort A
    Elife; 2020 May; 9():. PubMed ID: 32423528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting brain-age from multimodal imaging data captures cognitive impairment.
    Liem F; Varoquaux G; Kynast J; Beyer F; Kharabian Masouleh S; Huntenburg JM; Lampe L; Rahim M; Abraham A; Craddock RC; Riedel-Heller S; Luck T; Loeffler M; Schroeter ML; Witte AV; Villringer A; Margulies DS
    Neuroimage; 2017 Mar; 148():179-188. PubMed ID: 27890805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting depression risk in early adolescence via multimodal brain imaging.
    Gracia-Tabuenca Z; Barbeau EB; Xia Y; Chai X
    Neuroimage Clin; 2024; 42():103604. PubMed ID: 38603863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A meta-analysis and systematic review of single vs. multimodal neuroimaging techniques in the classification of psychosis.
    Porter A; Fei S; Damme KSF; Nusslock R; Gratton C; Mittal VA
    Mol Psychiatry; 2023 Aug; 28(8):3278-3292. PubMed ID: 37563277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using genetic, cognitive and multi-modal neuroimaging data to identify ultra-high-risk and first-episode psychosis at the individual level.
    Pettersson-Yeo W; Benetti S; Marquand AF; Dell'acqua F; Williams SC; Allen P; Prata D; McGuire P; Mechelli A
    Psychol Med; 2013 Dec; 43(12):2547-62. PubMed ID: 23507081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multimodality neuroimaging brain-age in UK biobank: relationship to biomedical, lifestyle, and cognitive factors.
    Cole JH
    Neurobiol Aging; 2020 Aug; 92():34-42. PubMed ID: 32380363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multimodal fusion of structural and functional brain imaging in depression using linked independent component analysis.
    Maglanoc LA; Kaufmann T; Jonassen R; Hilland E; Beck D; Landrø NI; Westlye LT
    Hum Brain Mapp; 2020 Jan; 41(1):241-255. PubMed ID: 31571370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multimodal Brain Age Prediction with Feature Selection and Comparison.
    Ray B; Duan K; Chen J; Fu Z; Suresh P; Johnson S; Calhoun VD; Liu J
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3858-3864. PubMed ID: 34892076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential sensitivity of structural, diffusion, and resting-state functional MRI for detecting brain alterations and verbal memory impairment in temporal lobe epilepsy.
    Chang YA; Marshall A; Bahrami N; Mathur K; Javadi SS; Reyes A; Hegde M; Shih JJ; Paul BM; Hagler DJ; McDonald CR
    Epilepsia; 2019 May; 60(5):935-947. PubMed ID: 31020649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning-based multimodal prediction of language outcomes in chronic aphasia.
    Kristinsson S; Zhang W; Rorden C; Newman-Norlund R; Basilakos A; Bonilha L; Yourganov G; Xiao F; Hillis A; Fridriksson J
    Hum Brain Mapp; 2021 Apr; 42(6):1682-1698. PubMed ID: 33377592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multimodal analysis of functional and structural disconnection in Alzheimer's disease using multiple kernel SVM.
    Dyrba M; Grothe M; Kirste T; Teipel SJ
    Hum Brain Mapp; 2015 Jun; 36(6):2118-31. PubMed ID: 25664619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multimodal brain age prediction using machine learning: combining structural MRI and 5-HT2AR PET-derived features.
    Dörfel RP; Arenas-Gomez JM; Svarer C; Ganz M; Knudsen GM; Svensson JE; Plavén-Sigray P
    Geroscience; 2024 Oct; 46(5):4123-4133. PubMed ID: 38668887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generalization of diffusion magnetic resonance imaging-based brain age prediction model through transfer learning.
    Chen CL; Hsu YC; Yang LY; Tung YH; Luo WB; Liu CM; Hwang TJ; Hwu HG; Isaac Tseng WY
    Neuroimage; 2020 Aug; 217():116831. PubMed ID: 32438048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain status modeling with non-negative projective dictionary learning.
    Zhang M; Desrosiers C; Guo Y; Khundrakpam B; Al-Sharif N; Kiar G; Valdes-Sosa P; Poline JB; Evans A
    Neuroimage; 2020 Feb; 206():116226. PubMed ID: 31593792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multimodal brain-age prediction and cardiovascular risk: The Whitehall II MRI sub-study.
    de Lange AG; Anatürk M; Suri S; Kaufmann T; Cole JH; Griffanti L; Zsoldos E; Jensen DEA; Filippini N; Singh-Manoux A; Kivimäki M; Westlye LT; Ebmeier KP
    Neuroimage; 2020 Nov; 222():117292. PubMed ID: 32835819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visualization and unsupervised predictive clustering of high-dimensional multimodal neuroimaging data.
    Mwangi B; Soares JC; Hasan KM
    J Neurosci Methods; 2014 Oct; 236():19-25. PubMed ID: 25117552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lack of evidence for predictive utility from resting state fMRI data for individual exposure-based cognitive behavioral therapy outcomes: A machine learning study in two large multi-site samples in anxiety disorders.
    Hilbert K; Böhnlein J; Meinke C; Chavanne AV; Langhammer T; Stumpe L; Winter N; Leenings R; Adolph D; Arolt V; Bischoff S; Cwik JC; Deckert J; Domschke K; Fydrich T; Gathmann B; Hamm AO; Heinig I; Herrmann MJ; Hollandt M; Hoyer J; Junghöfer M; Kircher T; Koelkebeck K; Lotze M; Margraf J; Mumm JLM; Neudeck P; Pauli P; Pittig A; Plag J; Richter J; Ridderbusch IC; Rief W; Schneider S; Schwarzmeier H; Seeger FR; Siminski N; Straube B; Straube T; Ströhle A; Wittchen HU; Wroblewski A; Yang Y; Roesmann K; Leehr EJ; Dannlowski U; Lueken U
    Neuroimage; 2024 Jul; 295():120639. PubMed ID: 38796977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning approaches for integrating clinical and imaging features in late-life depression classification and response prediction.
    Patel MJ; Andreescu C; Price JC; Edelman KL; Reynolds CF; Aizenstein HJ
    Int J Geriatr Psychiatry; 2015 Oct; 30(10):1056-67. PubMed ID: 25689482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multimodal neuroimaging-based prediction of adult outcomes in childhood-onset ADHD using ensemble learning techniques.
    Luo Y; Alvarez TL; Halperin JM; Li X
    Neuroimage Clin; 2020; 26():102238. PubMed ID: 32182578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.