These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
397 related articles for article (PubMed ID: 31837239)
1. Breast tumor classification through learning from noisy labeled ultrasound images. Cao Z; Yang G; Chen Q; Chen X; Lv F Med Phys; 2020 Mar; 47(3):1048-1057. PubMed ID: 31837239 [TBL] [Abstract][Full Text] [Related]
2. Classification of multi-feature fusion ultrasound images of breast tumor within category 4 using convolutional neural networks. Xu P; Zhao J; Wan M; Song Q; Su Q; Wang D Med Phys; 2024 Jun; 51(6):4243-4257. PubMed ID: 38436433 [TBL] [Abstract][Full Text] [Related]
3. A deep learning framework to classify breast density with noisy labels regularization. Lopez-Almazan H; Javier Pérez-Benito F; Larroza A; Perez-Cortes JC; Pollan M; Perez-Gomez B; Salas Trejo D; Casals M; Llobet R Comput Methods Programs Biomed; 2022 Jun; 221():106885. PubMed ID: 35594581 [TBL] [Abstract][Full Text] [Related]
4. Sample self-selection using dual teacher networks for pathological image classification with noisy labels. Han G; Guo W; Zhang H; Jin J; Gan X; Zhao X Comput Biol Med; 2024 May; 174():108489. PubMed ID: 38640633 [TBL] [Abstract][Full Text] [Related]
5. Two-stage CNNs for computerized BI-RADS categorization in breast ultrasound images. Huang Y; Han L; Dou H; Luo H; Yuan Z; Liu Q; Zhang J; Yin G Biomed Eng Online; 2019 Jan; 18(1):8. PubMed ID: 30678680 [TBL] [Abstract][Full Text] [Related]
6. S-CUDA: Self-cleansing unsupervised domain adaptation for medical image segmentation. Liu L; Zhang Z; Li S; Ma K; Zheng Y Med Image Anal; 2021 Dec; 74():102214. PubMed ID: 34464837 [TBL] [Abstract][Full Text] [Related]
7. The uncertainty of boundary can improve the classification accuracy of BI-RADS 4A ultrasound image. Wang H; Hu Y; Lu Y; Zhou J; Guo Y Med Phys; 2022 May; 49(5):3314-3324. PubMed ID: 35261034 [TBL] [Abstract][Full Text] [Related]
8. An experimental study on breast lesion detection and classification from ultrasound images using deep learning architectures. Cao Z; Duan L; Yang G; Yue T; Chen Q BMC Med Imaging; 2019 Jul; 19(1):51. PubMed ID: 31262255 [TBL] [Abstract][Full Text] [Related]
9. BIRADS features-oriented semi-supervised deep learning for breast ultrasound computer-aided diagnosis. Zhang E; Seiler S; Chen M; Lu W; Gu X Phys Med Biol; 2020 Jun; 65(12):125005. PubMed ID: 32155605 [TBL] [Abstract][Full Text] [Related]
10. EMD-DWT based transform domain feature reduction approach for quantitative multi-class classification of breast lesions. Ara SR; Bashar SK; Alam F; Hasan MK Ultrasonics; 2017 Sep; 80():22-33. PubMed ID: 28499122 [TBL] [Abstract][Full Text] [Related]
11. Graph temporal ensembling based semi-supervised convolutional neural network with noisy labels for histopathology image analysis. Shi X; Su H; Xing F; Liang Y; Qu G; Yang L Med Image Anal; 2020 Feb; 60():101624. PubMed ID: 31841948 [TBL] [Abstract][Full Text] [Related]
12. Weakly Supervised Lesion Detection and Diagnosis for Breast Cancers With Partially Annotated Ultrasound Images. Wang J; Qiao L; Zhou S; Zhou J; Wang J; Li J; Ying S; Chang C; Shi J IEEE Trans Med Imaging; 2024 Jul; 43(7):2509-2521. PubMed ID: 38373131 [TBL] [Abstract][Full Text] [Related]
13. Automated BI-RADS classification of lesions using pyramid triple deep feature generator technique on breast ultrasound images. Kaplan E; Chan WY; Dogan S; Barua PD; Bulut HT; Tuncer T; Cizik M; Tan RS; Acharya UR Med Eng Phys; 2022 Oct; 108():103895. PubMed ID: 36195364 [TBL] [Abstract][Full Text] [Related]
14. A Robust Breast ultrasound segmentation method under noisy annotations. Zou H; Gong X; Luo J; Li T Comput Methods Programs Biomed; 2021 Sep; 209():106327. PubMed ID: 34428680 [TBL] [Abstract][Full Text] [Related]
15. Improving Medical Image Classification in Noisy Labels Using only Self-supervised Pretraining. Khanal B; Bhattarai B; Khanal B; Linte CA Data Eng Med Imaging (2023); 2023 Oct; 14314():78-90. PubMed ID: 39144367 [TBL] [Abstract][Full Text] [Related]
16. Suppressing label noise in medical image classification using mixup attention and self-supervised learning. Gao M; Jiang H; Hu Y; Ren Q; Xie Z; Liu J Phys Med Biol; 2024 May; 69(10):. PubMed ID: 38636495 [TBL] [Abstract][Full Text] [Related]
17. Deep weakly-supervised breast tumor segmentation in ultrasound images with explicit anatomical constraints. Li Y; Liu Y; Huang L; Wang Z; Luo J Med Image Anal; 2022 Feb; 76():102315. PubMed ID: 34902792 [TBL] [Abstract][Full Text] [Related]
18. Breast ultrasound tumor image classification using image decomposition and fusion based on adaptive multi-model spatial feature fusion. Zhuang Z; Yang Z; Raj ANJ; Wei C; Jin P; Zhuang S Comput Methods Programs Biomed; 2021 Sep; 208():106221. PubMed ID: 34144251 [TBL] [Abstract][Full Text] [Related]
19. Computer-Aided Diagnosis for Breast Ultrasound Using Computerized BI-RADS Features and Machine Learning Methods. Shan J; Alam SK; Garra B; Zhang Y; Ahmed T Ultrasound Med Biol; 2016 Apr; 42(4):980-8. PubMed ID: 26806441 [TBL] [Abstract][Full Text] [Related]
20. A VGG attention vision transformer network for benign and malignant classification of breast ultrasound images. Qu X; Lu H; Tang W; Wang S; Zheng D; Hou Y; Jiang J Med Phys; 2022 Sep; 49(9):5787-5798. PubMed ID: 35866492 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]