These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. The protective effect of rapid cold-hardening develops more quickly in frozen versus supercooled larvae of the Antarctic midge, Belgica antarctica. Kawarasaki Y; Teets NM; Denlinger DL; Lee RE J Exp Biol; 2013 Oct; 216(Pt 20):3937-45. PubMed ID: 23868837 [TBL] [Abstract][Full Text] [Related]
25. The limits of drought-induced rapid cold-hardening: extremely brief, mild desiccation triggers enhanced freeze-tolerance in Eurosta solidaginis larvae. Gantz JD; Lee RE J Insect Physiol; 2015 Feb; 73():30-6. PubMed ID: 25545423 [TBL] [Abstract][Full Text] [Related]
26. Low temperature acclimated populations of the grain aphid Sitobion avenae retain ability to rapidly cold harden with enhanced fitness. Powell SJ; Bale JS J Exp Biol; 2005 Jul; 208(Pt 13):2615-20. PubMed ID: 15961747 [TBL] [Abstract][Full Text] [Related]
28. The effects of carbon dioxide anesthesia and anoxia on rapid cold-hardening and chill coma recovery in Drosophila melanogaster. Nilson TL; Sinclair BJ; Roberts SP J Insect Physiol; 2006 Oct; 52(10):1027-33. PubMed ID: 16996534 [TBL] [Abstract][Full Text] [Related]
30. Long-term cold acclimation extends survival time at 0°C and modifies the metabolomic profiles of the larvae of the fruit fly Drosophila melanogaster. Koštál V; Korbelová J; Rozsypal J; Zahradníčková H; Cimlová J; Tomčala A; Šimek P PLoS One; 2011; 6(9):e25025. PubMed ID: 21957472 [TBL] [Abstract][Full Text] [Related]
31. Stress-induced accumulation of glycerol in the flesh fly, Sarcophaga bullata: evidence indicating anti-desiccant and cryoprotectant functions of this polyol and a role for the brain in coordinating the response. Yoder JA; Benoit JB; Denlinger DL; Rivers DB J Insect Physiol; 2006 Feb; 52(2):202-14. PubMed ID: 16290823 [TBL] [Abstract][Full Text] [Related]
32. Enhancement of supercooling capacity and survival by cold acclimation, rapid cold and heat hardening in Spodoptera exigua. Zheng X; Cheng W; Wang X; Lei C Cryobiology; 2011 Dec; 63(3):164-9. PubMed ID: 21878325 [TBL] [Abstract][Full Text] [Related]
33. A specific glycerol kinase induces rapid cold hardening of the diamondback moth, Plutella xylostella. Park Y; Kim Y J Insect Physiol; 2014 Aug; 67():56-63. PubMed ID: 24973793 [TBL] [Abstract][Full Text] [Related]
35. Relationship between rapid cold-hardening and cold acclimation in the eggs of the yellow-spotted longicorn beetle, Psacothea hilaris. Shintani Y; Ishikawa Y J Insect Physiol; 2007 Oct; 53(10):1055-62. PubMed ID: 17628587 [TBL] [Abstract][Full Text] [Related]
36. Speed of exposure to rapid cold hardening and genotype drive the level of acclimation response in Drosophila melanogaster. Gerken AR; Eller-Smith OC; Morgan TJ J Therm Biol; 2018 Aug; 76():21-28. PubMed ID: 30143293 [TBL] [Abstract][Full Text] [Related]
37. Metabolomic profiling of rapid cold hardening and cold shock in Drosophila melanogaster. Overgaard J; Malmendal A; Sørensen JG; Bundy JG; Loeschcke V; Nielsen NC; Holmstrup M J Insect Physiol; 2007 Dec; 53(12):1218-32. PubMed ID: 17662301 [TBL] [Abstract][Full Text] [Related]
38. Stage-related variation in rapid cold hardening as a test of the environmental predictability hypothesis. Terblanche JS; Marais E; Chown SL J Insect Physiol; 2007 May; 53(5):455-62. PubMed ID: 17368475 [TBL] [Abstract][Full Text] [Related]