These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 31837342)
1. A single bout of vigorous-intensity aerobic exercise affects reactive, but not proactive cognitive brain functions. Chacko SC; Quinzi F; De Fano A; Bianco V; Mussini E; Berchicci M; Perri RL; Di Russo F Int J Psychophysiol; 2020 Jan; 147():233-243. PubMed ID: 31837342 [TBL] [Abstract][Full Text] [Related]
3. Electrophysiological evidence of sustained spatial attention effects over anterior cortex: Possible contribution of the anterior insula. Berchicci M; Ten Brink AF; Quinzi F; Perri RL; Spinelli D; Di Russo F Psychophysiology; 2019 Jul; 56(7):e13369. PubMed ID: 30927459 [TBL] [Abstract][Full Text] [Related]
4. Weak proactive cognitive/motor brain control accounts for poor children's behavioral performance in speeded discrimination tasks. Quinzi F; Perri RL; Berchicci M; Bianco V; Pitzalis S; Zeri F; Di Russo F Biol Psychol; 2018 Oct; 138():211-222. PubMed ID: 30130614 [TBL] [Abstract][Full Text] [Related]
5. From cognitive motor preparation to visual processing: The benefits of childhood fitness to brain health. Berchicci M; Pontifex MB; Drollette ES; Pesce C; Hillman CH; Di Russo F Neuroscience; 2015 Jul; 298():211-9. PubMed ID: 25907444 [TBL] [Abstract][Full Text] [Related]
6. Hemispheric asymmetries in the transition from action preparation to execution. Sulpizio V; Lucci G; Berchicci M; Galati G; Pitzalis S; Di Russo F Neuroimage; 2017 Mar; 148():390-402. PubMed ID: 28069542 [TBL] [Abstract][Full Text] [Related]
7. Spatiotemporal brain mapping during preparation, perception, and action. Di Russo F; Lucci G; Sulpizio V; Berchicci M; Spinelli D; Pitzalis S; Galati G Neuroimage; 2016 Feb; 126():1-14. PubMed ID: 26608247 [TBL] [Abstract][Full Text] [Related]
8. Neural Correlates of Enhanced Visual Attentional Control in Action Video Game Players: An Event-Related Potential Study. Föcker J; Mortazavi M; Khoe W; Hillyard SA; Bavelier D J Cogn Neurosci; 2019 Mar; 31(3):377-389. PubMed ID: 29308981 [TBL] [Abstract][Full Text] [Related]
9. Exercise-related cognitive effects on sensory-motor control in athletes and drummers compared to non-athletes and other musicians. Bianco V; Berchicci M; Perri RL; Quinzi F; Di Russo F Neuroscience; 2017 Sep; 360():39-47. PubMed ID: 28764939 [TBL] [Abstract][Full Text] [Related]
10. EEG evidence for enhanced attentional performance during moderate-intensity exercise. Dodwell G; Liesefeld HR; Conci M; Müller HJ; Töllner T Psychophysiology; 2021 Dec; 58(12):e13923. PubMed ID: 34370887 [TBL] [Abstract][Full Text] [Related]
11. Females are more proactive, males are more reactive: neural basis of the gender-related speed/accuracy trade-off in visuo-motor tasks. Bianco V; Berchicci M; Quinzi F; Perri RL; Spinelli D; Di Russo F Brain Struct Funct; 2020 Jan; 225(1):187-201. PubMed ID: 31797033 [TBL] [Abstract][Full Text] [Related]
12. Normative event-related potentials from sensory and cognitive tasks reveal occipital and frontal activities prior and following visual events. Di Russo F; M B; V B; Rl P; S P; F Q; D S Neuroimage; 2019 Aug; 196():173-187. PubMed ID: 30981857 [TBL] [Abstract][Full Text] [Related]
13. Missing the Target: the Neural Processing Underlying the Omission Error. Perri RL; Spinelli D; Di Russo F Brain Topogr; 2017 May; 30(3):352-363. PubMed ID: 28108852 [TBL] [Abstract][Full Text] [Related]
14. Electrophysiological evidence for the involvement of proactive and reactive control in a rewarded stop-signal task. Schevernels H; Bombeke K; Van der Borght L; Hopf JM; Krebs RM; Boehler CN Neuroimage; 2015 Nov; 121():115-25. PubMed ID: 26188262 [TBL] [Abstract][Full Text] [Related]
15. Preparatory ERPs in visual, auditory, and somatosensory discriminative motor tasks. Bianco V; Berchicci M; Livio Perri R; Quinzi F; Mussini E; Spinelli D; Di Russo F Psychophysiology; 2020 Dec; 57(12):e13687. PubMed ID: 32970337 [TBL] [Abstract][Full Text] [Related]
16. Cognitive potentials in the basal ganglia-frontocortical circuits. An intracerebral recording study. Rektor I; Bares M; Kanovský P; Brázdil M; Klajblová I; Streitová H; Rektorová I; Sochůrková D; Kubová D; Kuba R; Daniel P Exp Brain Res; 2004 Oct; 158(3):289-301. PubMed ID: 15221170 [TBL] [Abstract][Full Text] [Related]
17. EEG-ERP dynamics in a visual Continuous Performance Test. Karamacoska D; Barry RJ; De Blasio FM; Steiner GZ Int J Psychophysiol; 2019 Dec; 146():249-260. PubMed ID: 31648022 [TBL] [Abstract][Full Text] [Related]
18. Rapid adaptive adjustments of selective attention following errors revealed by the time course of steady-state visual evoked potentials. Steinhauser M; Andersen SK Neuroimage; 2019 Feb; 186():83-92. PubMed ID: 30366075 [TBL] [Abstract][Full Text] [Related]
19. The impacts of coordinative exercise on executive function in kindergarten children: an ERP study. Chang YK; Tsai YJ; Chen TT; Hung TM Exp Brain Res; 2013 Mar; 225(2):187-96. PubMed ID: 23239198 [TBL] [Abstract][Full Text] [Related]
20. Attentional Resource Associated With Visual Feedback on a Postural Dual Task in Parkinson's Disease. Yu SH; Wu RM; Huang CY Neurorehabil Neural Repair; 2020 Oct; 34(10):891-903. PubMed ID: 32830603 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]