These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 31837566)
1. Towards comprehensive analysis of oxygen containing organic compounds in groundwater at a crude oil spill site using GC×GC-TOFMS and Orbitrap ESI-MS. Mohler RE; Ahn S; O'Reilly K; Zemo DA; Espino Devine C; Magaw R; Sihota N Chemosphere; 2020 Apr; 244():125504. PubMed ID: 31837566 [TBL] [Abstract][Full Text] [Related]
2. Complex mixture toxicology: Evaluation of toxicity to freshwater aquatic receptors from biodegradation metabolites in groundwater at a crude oil release site, recent analogous results from other authors, and implications for risk management. Zemo DA; Patterson TJ; Kristofco L; Mohler RE; O'Reilly KT; Ahn S; Devine CE; Magaw RI; Sihota N Aquat Toxicol; 2022 Sep; 250():106247. PubMed ID: 35917677 [TBL] [Abstract][Full Text] [Related]
3. Life cycle of petroleum biodegradation metabolite plumes, and implications for risk management at fuel release sites. Zemo DA; O'Reilly KT; Mohler RE; Magaw RI; Espino Devine C; Ahn S; Tiwary AK Integr Environ Assess Manag; 2017 Jul; 13(4):714-727. PubMed ID: 27626237 [TBL] [Abstract][Full Text] [Related]
4. Non-targeted analysis of petroleum metabolites in groundwater using GC×GC-TOFMS. Mohler RE; O'Reilly KT; Zemo DA; Tiwary AK; Magaw RI; Synowiec KA Environ Sci Technol; 2013 Sep; 47(18):10471-6. PubMed ID: 23971758 [TBL] [Abstract][Full Text] [Related]
5. A mass balance approach to investigating geochemical controls on secondary water quality impacts at a crude oil spill site near Bemidji, MN. Ng GH; Bekins BA; Cozzarelli IM; Baedecker MJ; Bennett PC; Amos RT J Contam Hydrol; 2014 Aug; 164():1-15. PubMed ID: 24908586 [TBL] [Abstract][Full Text] [Related]
6. Identification of ester metabolites from petroleum hydrocarbon biodegradation in groundwater using GC×GC-TOFMS. O'Reilly KT; Mohler RE; Zemo DA; Ahn S; Tiwary AK; Magaw RI; Devine CE; Synowiec KA Environ Toxicol Chem; 2015 Sep; 34(9):1959-61. PubMed ID: 25891164 [TBL] [Abstract][Full Text] [Related]
7. Characterization of a crude oil weathering series by ultrahigh-resolution mass spectrometry using multiple ionization modes. Huba AK; Gardinali PR Sci Total Environ; 2016 Sep; 563-564():600-10. PubMed ID: 27203365 [TBL] [Abstract][Full Text] [Related]
8. Profiling oil sands mixtures from industrial developments and natural groundwaters for source identification. Frank RA; Roy JW; Bickerton G; Rowland SJ; Headley JV; Scarlett AG; West CE; Peru KM; Parrott JL; Conly FM; Hewitt LM Environ Sci Technol; 2014; 48(5):2660-70. PubMed ID: 24446583 [TBL] [Abstract][Full Text] [Related]
9. Orbitrap ESI-MS evaluation of solvent extractable organics from a crude oil release site. O'Reilly KT; Sihota N; Mohler RE; Zemo DA; Ahn S; Magaw RI; Devine CE J Contam Hydrol; 2021 Oct; 242():103855. PubMed ID: 34265523 [TBL] [Abstract][Full Text] [Related]
10. Human and Aquatic Toxicity Potential of Petroleum Biodegradation Metabolite Mixtures in Groundwater from Fuel Release Sites. Patterson TJ; Kristofco L; Tiwary AK; Magaw RI; Zemo DA; O'Reilly KT; Mohler RE; Ahn S; Sihota N; Devine CE Environ Toxicol Chem; 2020 Aug; 39(8):1634-1645. PubMed ID: 32418246 [TBL] [Abstract][Full Text] [Related]
11. Biodegradability of legacy crude oil contamination in Gulf War damaged groundwater wells in Northern Kuwait. Bruckberger MC; Morgan MJ; Walsh T; Bastow TP; Prommer H; Mukhopadhyay A; Kaksonen AH; Davis G; Puzon GJ Biodegradation; 2019 Feb; 30(1):71-85. PubMed ID: 30729339 [TBL] [Abstract][Full Text] [Related]
13. Application of enhanced gas chromatography/triple quadrupole mass spectrometry for monitoring petroleum weathering and forensic source fingerprinting in samples impacted by the Deepwater Horizon oil spill. Adhikari PL; Wong RL; Overton EB Chemosphere; 2017 Oct; 184():939-950. PubMed ID: 28655113 [TBL] [Abstract][Full Text] [Related]
14. A mass balance approach to investigate arsenic cycling in a petroleum plume. Ziegler BA; Schreiber ME; Cozzarelli IM; Crystal Ng GH Environ Pollut; 2017 Dec; 231(Pt 2):1351-1361. PubMed ID: 28943347 [TBL] [Abstract][Full Text] [Related]
16. Chemical characterization of bio-oils using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry. Tessarolo NS; dos Santos LR; Silva RS; Azevedo DA J Chromatogr A; 2013 Mar; 1279():68-75. PubMed ID: 23357744 [TBL] [Abstract][Full Text] [Related]
17. Qualitative and quantitative analysis of pyrolysis oil by gas chromatography with flame ionization detection and comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry. Sfetsas T; Michailof C; Lappas A; Li Q; Kneale B J Chromatogr A; 2011 May; 1218(21):3317-25. PubMed ID: 21036362 [TBL] [Abstract][Full Text] [Related]
18. Elemental and spectroscopic characterization of fractions of an acidic extract of oil sands process water. Jones D; Scarlett AG; West CE; Frank RA; Gieleciak R; Hager D; Pureveen J; Tegelaar E; Rowland SJ Chemosphere; 2013 Nov; 93(9):1655-64. PubMed ID: 23856466 [TBL] [Abstract][Full Text] [Related]
19. Groundwater screening for 940 organic micro-pollutants in Hanoi and Ho Chi Minh City, Vietnam. Duong HT; Kadokami K; Chau HT; Nguyen TQ; Nguyen TT; Kong L Environ Sci Pollut Res Int; 2015 Dec; 22(24):19835-47. PubMed ID: 26286799 [TBL] [Abstract][Full Text] [Related]
20. Use of electron ionization and atmospheric pressure chemical ionization in gas chromatography coupled to time-of-flight mass spectrometry for screening and identification of organic pollutants in waters. Portolés T; Mol JG; Sancho JV; Hernández F J Chromatogr A; 2014 Apr; 1339():145-53. PubMed ID: 24674644 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]