BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 31837595)

  • 1. Flippase and scramblase for phosphatidylserine exposure.
    Nagata S; Sakuragi T; Segawa K
    Curr Opin Immunol; 2020 Feb; 62():31-38. PubMed ID: 31837595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exposure of phosphatidylserine on the cell surface.
    Nagata S; Suzuki J; Segawa K; Fujii T
    Cell Death Differ; 2016 Jun; 23(6):952-61. PubMed ID: 26891692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Apoptotic 'Eat Me' Signal: Phosphatidylserine Exposure.
    Segawa K; Nagata S
    Trends Cell Biol; 2015 Nov; 25(11):639-650. PubMed ID: 26437594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Caspase-mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure.
    Segawa K; Kurata S; Yanagihashi Y; Brummelkamp TR; Matsuda F; Nagata S
    Science; 2014 Jun; 344(6188):1164-8. PubMed ID: 24904167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylation-mediated activation of mouse Xkr8 scramblase for phosphatidylserine exposure.
    Sakuragi T; Kosako H; Nagata S
    Proc Natl Acad Sci U S A; 2019 Feb; 116(8):2907-2912. PubMed ID: 30718401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles of phosphatidylserine exposed on the viral envelope and cell membrane in HIV-1 replication.
    Chua BA; Ngo JA; Situ K; Morizono K
    Cell Commun Signal; 2019 Oct; 17(1):132. PubMed ID: 31638994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of flippases, scramblases and transfer proteins in phosphatidylserine subcellular distribution.
    Hankins HM; Baldridge RD; Xu P; Graham TR
    Traffic; 2015 Jan; 16(1):35-47. PubMed ID: 25284293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of phospholipid distribution in the lipid bilayer by flippases and scramblases.
    Sakuragi T; Nagata S
    Nat Rev Mol Cell Biol; 2023 Aug; 24(8):576-596. PubMed ID: 37106071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human Type IV P-type ATPases That Work as Plasma Membrane Phospholipid Flippases and Their Regulation by Caspase and Calcium.
    Segawa K; Kurata S; Nagata S
    J Biol Chem; 2016 Jan; 291(2):762-72. PubMed ID: 26567335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two types of type IV P-type ATPases independently re-establish the asymmetrical distribution of phosphatidylserine in plasma membranes.
    Miyata Y; Yamada K; Nagata S; Segawa K
    J Biol Chem; 2022 Nov; 298(11):102527. PubMed ID: 36162506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATP11C is a major flippase in human erythrocytes and its defect causes congenital hemolytic anemia.
    Arashiki N; Takakuwa Y; Mohandas N; Hale J; Yoshida K; Ogura H; Utsugisawa T; Ohga S; Miyano S; Ogawa S; Kojima S; Kanno H
    Haematologica; 2016 May; 101(5):559-65. PubMed ID: 26944472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of phospholipid dynamics in brain.
    Maruoka M; Suzuki J
    Neurosci Res; 2021 Jun; 167():30-37. PubMed ID: 33476682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution, dynamics and functional roles of phosphatidylserine within the cell.
    Kay JG; Fairn GD
    Cell Commun Signal; 2019 Oct; 17(1):126. PubMed ID: 31615534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensing and clearance of apoptotic cells.
    Nagata S; Segawa K
    Curr Opin Immunol; 2021 Feb; 68():1-8. PubMed ID: 32853880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphatidylserine exposure in living cells.
    Shin HW; Takatsu H
    Crit Rev Biochem Mol Biol; 2020 Apr; 55(2):166-178. PubMed ID: 32408772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction in flippase activity contributes to surface presentation of phosphatidylserine in human senescent erythrocytes.
    Seki M; Arashiki N; Takakuwa Y; Nitta K; Nakamura F
    J Cell Mol Med; 2020 Dec; 24(23):13991-14000. PubMed ID: 33103382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clearance of Apoptotic Cells and Pyrenocytes.
    Toda S; Nishi C; Yanagihashi Y; Segawa K; Nagata S
    Curr Top Dev Biol; 2015; 114():267-95. PubMed ID: 26431571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium-dependent phospholipid scrambling by TMEM16F.
    Suzuki J; Umeda M; Sims PJ; Nagata S
    Nature; 2010 Dec; 468(7325):834-8. PubMed ID: 21107324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport Cycle of Plasma Membrane Flippase ATP11C by Cryo-EM.
    Nakanishi H; Nishizawa T; Segawa K; Nureki O; Fujiyoshi Y; Nagata S; Abe K
    Cell Rep; 2020 Sep; 32(13):108208. PubMed ID: 32997992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efferocytosis and autoimmune disease.
    Kawano M; Nagata S
    Int Immunol; 2018 Nov; 30(12):551-558. PubMed ID: 30165442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.