These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 31837677)

  • 1. Dielectric response function for colloidal semiconductor quantum dots.
    Karpulevich A; Bui H; Wang Z; Hapke S; Palencia Ramírez C; Weller H; Bester G
    J Chem Phys; 2019 Dec; 151(22):224103. PubMed ID: 31837677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots.
    Kim J; Wong CY; Scholes GD
    Acc Chem Res; 2009 Aug; 42(8):1037-46. PubMed ID: 19425542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Direct Solvent-Quantum Dot Interaction on the Optical Properties of Colloidal Monolayer WS
    Jin H; Baek B; Kim D; Wu F; Batteas JD; Cheon J; Son DH
    Nano Lett; 2017 Dec; 17(12):7471-7477. PubMed ID: 29076338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-Solvent Complex Formation at the Surface of InP Colloidal Quantum Dots.
    Hai Y; Gahlot K; Tanchev M; Mutalik S; Tekelenburg EK; Hong J; Ahmadi M; Piveteau L; Loi MA; Protesescu L
    J Am Chem Soc; 2024 May; 146(18):12808-12818. PubMed ID: 38668701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic Tuning of the Bandgap of CdSe Quantum Dots through Redox-Active Exciton-Delocalizing N-Heterocyclic Carbene Ligands.
    Westmoreland DE; López-Arteaga R; Kantt LP; Wasielewski MR; Weiss EA
    J Am Chem Soc; 2022 Mar; 144(10):4300-4304. PubMed ID: 35254065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relaxation of exciton confinement in CdSe quantum dots by modification with a conjugated dithiocarbamate ligand.
    Frederick MT; Weiss EA
    ACS Nano; 2010 Jun; 4(6):3195-200. PubMed ID: 20503978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligands Slow Down Pure-Dephasing in Semiconductor Quantum Dots.
    Liu J; Kilina SV; Tretiak S; Prezhdo OV
    ACS Nano; 2015 Sep; 9(9):9106-16. PubMed ID: 26284384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface Chemistry of Semiconducting Quantum Dots: Theoretical Perspectives.
    Kilina SV; Tamukong PK; Kilin DS
    Acc Chem Res; 2016 Oct; 49(10):2127-2135. PubMed ID: 27669357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Interligand Coupling in Determining the Interfacial Electronic Structure of Colloidal CdS Quantum Dots.
    Harris RD; Amin VA; Lau B; Weiss EA
    ACS Nano; 2016 Jan; 10(1):1395-403. PubMed ID: 26727219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical characterization of colloidal CdSe quantum dots in endothelial progenitor cells.
    Molnár M; Fu Y; Friberg P; Chen Y
    J Nanobiotechnology; 2010 Feb; 8(1):2. PubMed ID: 20205887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Luminescent Colloidal InSb Quantum Dots from
    Busatto S; Ruiter M; Jastrzebski JTBH; Albrecht W; Pinchetti V; Brovelli S; Bals S; Moret ME; de Mello Donega C
    ACS Nano; 2020 Oct; 14(10):13146-13160. PubMed ID: 32915541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum chemistry of quantum dots: effects of ligands and oxidation.
    Inerbaev TM; Masunov AE; Khondaker SI; Dobrinescu A; Plamadă AV; Kawazoe Y
    J Chem Phys; 2009 Jul; 131(4):044106. PubMed ID: 19655836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Terahertz-Driven Luminescence and Colossal Stark Effect in CdSe-CdS Colloidal Quantum Dots.
    Pein BC; Chang W; Hwang HY; Scherer J; Coropceanu I; Zhao X; Zhang X; Bulović V; Bawendi M; Nelson KA
    Nano Lett; 2017 Sep; 17(9):5375-5380. PubMed ID: 28786683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size-Dependent Band-Gap and Molar Absorption Coefficients of Colloidal CuInS
    Xia C; Wu W; Yu T; Xie X; van Oversteeg C; Gerritsen HC; de Mello Donega C
    ACS Nano; 2018 Aug; 12(8):8350-8361. PubMed ID: 30085648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Size and Shape Anisotropy on Optical Properties of CdSe Quantum Dots.
    Kim SH; Man MT; Lee JW; Park KD; Lee HS
    Nanomaterials (Basel); 2020 Aug; 10(8):. PubMed ID: 32806736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "Darker-than-black" PbS quantum dots: enhancing optical absorption of colloidal semiconductor nanocrystals via short conjugated ligands.
    Giansante C; Infante I; Fabiano E; Grisorio R; Suranna GP; Gigli G
    J Am Chem Soc; 2015 Feb; 137(5):1875-86. PubMed ID: 25574692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Passivating ligand and solvent contributions to the electronic properties of semiconductor nanocrystals.
    Fischer SA; Crotty AM; Kilina SV; Ivanov SA; Tretiak S
    Nanoscale; 2012 Feb; 4(3):904-14. PubMed ID: 22170563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal charging of colloidal quantum dots in apolar solvents: a current transient analysis.
    Cirillo M; Strubbe F; Neyts K; Hens Z
    ACS Nano; 2011 Feb; 5(2):1345-52. PubMed ID: 21222469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoinduced dynamics in semiconductor quantum dots: insights from time-domain ab initio studies.
    Prezhdo OV
    Acc Chem Res; 2009 Dec; 42(12):2005-16. PubMed ID: 19888715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The dynamic surface chemistry of colloidal metal chalcogenide quantum dots.
    Grisorio R; Quarta D; Fiore A; Carbone L; Suranna GP; Giansante C
    Nanoscale Adv; 2019 Sep; 1(9):3639-3646. PubMed ID: 36133571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.