These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 31838016)

  • 1. Distribution of tight junctions in the primate cochlear lateral wall.
    Saeki T; Hosoya M; Shibata S; Okano H; Fujioka M; Ogawa K
    Neurosci Lett; 2020 Jan; 717():134686. PubMed ID: 31838016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The distribution of perivascular-resident cells in blood-labyrinth barrier observed with two-photon fluorescence microscope and Imaris deconvolution].
    Jiang Y; Yao H; Chen J; Zhang J; Rao Y; Chen K; Tang Y
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2020 Jun; 34(6):486-491. PubMed ID: 32842175
    [No Abstract]   [Full Text] [Related]  

  • 3. Compartmentalization established by claudin-11-based tight junctions in stria vascularis is required for hearing through generation of endocochlear potential.
    Kitajiri S; Miyamoto T; Mineharu A; Sonoda N; Furuse K; Hata M; Sasaki H; Mori Y; Kubota T; Ito J; Furuse M; Tsukita S
    J Cell Sci; 2004 Oct; 117(Pt 21):5087-96. PubMed ID: 15456848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipopolysaccharide disrupts the cochlear blood-labyrinth barrier by activating perivascular resident macrophages and up-regulating MMP-9.
    Jiang Y; Zhang J; Rao Y; Chen J; Chen K; Tang Y
    Int J Pediatr Otorhinolaryngol; 2019 Dec; 127():109656. PubMed ID: 31470202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LDLR expression in the cochlea suggests a role in endolymph homeostasis and cochlear amplification.
    Saume A; Thiry M; Defourny J
    Hear Res; 2021 Sep; 409():108311. PubMed ID: 34311268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effect of microvascular pericytes of cochlear stria vascularis on endothelial cell permeability in C57BL/6J mice].
    Deng S; Dong B; Xu SR; Huang TL; Ma JW; Si JQ; Ma KT; Li L
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2021 Nov; 56(11):1185-1193. PubMed ID: 34749458
    [No Abstract]   [Full Text] [Related]  

  • 7. Lipopolysaccharide-induced middle ear inflammation disrupts the cochlear intra-strial fluid-blood barrier through down-regulation of tight junction proteins.
    Zhang J; Chen S; Hou Z; Cai J; Dong M; Shi X
    PLoS One; 2015; 10(3):e0122572. PubMed ID: 25815897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Matrix metalloproteinase-2 and -9 contribute to functional integrity and noise‑induced damage to the blood-labyrinth-barrier.
    Wu J; Han W; Chen X; Guo W; Liu K; Wang R; Zhang J; Sai N
    Mol Med Rep; 2017 Aug; 16(2):1731-1738. PubMed ID: 28627704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Noise-induced blood-labyrinth-barrier trauma of guinea pig and the protective effect of matrix metalloproteinase inhibitors].
    Sai N; Zhang T; Wu J; Han WJ
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2020 Apr; 55(4):363-370. PubMed ID: 32306634
    [No Abstract]   [Full Text] [Related]  

  • 10. Expression of an inwardly rectifying K+ channel, Kir5.1, in specific types of fibrocytes in the cochlear lateral wall suggests its functional importance in the establishment of endocochlear potential.
    Hibino H; Higashi-Shingai K; Fujita A; Iwai K; Ishii M; Kurachi Y
    Eur J Neurosci; 2004 Jan; 19(1):76-84. PubMed ID: 14750965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression patterns of claudins, tight junction adhesion molecules, in the inner ear.
    Kitajiri SI; Furuse M; Morita K; Saishin-Kiuchi Y; Kido H; Ito J; Tsukita S
    Hear Res; 2004 Jan; 187(1-2):25-34. PubMed ID: 14698084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatiotemporal loss of K+ transport proteins in the developing cochlear lateral wall of guinea pigs with hereditary deafness.
    Jin Z; Ulfendahl M; Järlebark L
    Eur J Neurosci; 2008 Jan; 27(1):145-54. PubMed ID: 18093167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sox10 expressing cells in the lateral wall of the aged mouse and human cochlea.
    Hao X; Xing Y; Moore MW; Zhang J; Han D; Schulte BA; Dubno JR; Lang H
    PLoS One; 2014; 9(6):e97389. PubMed ID: 24887110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Malformation of stria vascularis in the developing inner ear of the German waltzing guinea pig.
    Jin Z; Mannström P; Järlebark L; Ulfendahl M
    Cell Tissue Res; 2007 May; 328(2):257-70. PubMed ID: 17252244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular characterization of Connexin26 and Connnexin30 expression in the cochlear lateral wall.
    Liu YP; Zhao HB
    Cell Tissue Res; 2008 Sep; 333(3):395-403. PubMed ID: 18581144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fine structure and permeability of capillaries in the stria vascularis and spiral ligament of the inner ear of the guinea pig.
    Sakagami M; Matsunaga T; Hashimoto PH
    Cell Tissue Res; 1982; 226(3):511-22. PubMed ID: 7139688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Claudins in the tight junctions of stria vascularis marginal cells.
    Florian P; Amasheh S; Lessidrensky M; Todt I; Bloedow A; Ernst A; Fromm M; Gitter AH
    Biochem Biophys Res Commun; 2003 Apr; 304(1):5-10. PubMed ID: 12705875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gap junctions in the inner ear: comparison of distribution patterns in different vertebrates and assessement of connexin composition in mammals.
    Forge A; Becker D; Casalotti S; Edwards J; Marziano N; Nevill G
    J Comp Neurol; 2003 Dec; 467(2):207-31. PubMed ID: 14595769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Intercellular junctions in the guinea pig stria vascularis as shown by freeze-etching (author's transl)].
    Jahnke K
    Anat Embryol (Berl); 1975 Aug; 147(2):189-201. PubMed ID: 1180393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noise alters guinea pig's blood-labyrinth barrier ultrastructure and permeability along with a decrease of cochlear Claudin-5 and Occludin.
    Wu YX; Zhu GX; Liu XQ; Sun F; Zhou K; Wang S; Wang CM; Jia JW; Song JT; Lu LJ
    BMC Neurosci; 2014 Dec; 15():136. PubMed ID: 25539640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.