These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
289 related articles for article (PubMed ID: 31838080)
41. Identification, recombinant expression and immunological study of Lja-SHP2 in Lampetra japonica. Li X; Qu CM; Han YL; Liu X; Li QW Yi Chuan; 2020 Feb; 42(2):183-193. PubMed ID: 32102775 [TBL] [Abstract][Full Text] [Related]
42. SHP2: A Pleiotropic Target at the Interface of Cancer and Its Microenvironment. Sodir NM; Pathria G; Adamkewicz JI; Kelley EH; Sudhamsu J; Merchant M; Chiarle R; Maddalo D Cancer Discov; 2023 Nov; 13(11):2339-2355. PubMed ID: 37682219 [TBL] [Abstract][Full Text] [Related]
43. Overcoming Immune Checkpoint Therapy Resistance with SHP2 Inhibition in Cancer and Immune Cells: A Review of the Literature and Novel Combinatorial Approaches. Tojjari A; Saeed A; Sadeghipour A; Kurzrock R; Cavalcante L Cancers (Basel); 2023 Nov; 15(22):. PubMed ID: 38001644 [TBL] [Abstract][Full Text] [Related]
44. Helicobacter pylori infection activates Src homology-2 domain-containing phosphatase 2 to suppress IFN-γ signaling. Wang YC; Chen CL; Sheu BS; Yang YJ; Tseng PC; Hsieh CY; Lin CF J Immunol; 2014 Oct; 193(8):4149-58. PubMed ID: 25225672 [TBL] [Abstract][Full Text] [Related]
45. Identification of an allosteric benzothiazolopyrimidone inhibitor of the oncogenic protein tyrosine phosphatase SHP2. LaRochelle JR; Fodor M; Ellegast JM; Liu X; Vemulapalli V; Mohseni M; Stams T; Buhrlage SJ; Stegmaier K; LaMarche MJ; Acker MG; Blacklow SC Bioorg Med Chem; 2017 Dec; 25(24):6479-6485. PubMed ID: 29089257 [TBL] [Abstract][Full Text] [Related]
46. Targeting a cryptic allosteric site for selective inhibition of the oncogenic protein tyrosine phosphatase Shp2. Chio CM; Lim CS; Bishop AC Biochemistry; 2015 Jan; 54(2):497-504. PubMed ID: 25519989 [TBL] [Abstract][Full Text] [Related]
47. Demonstrating the effect of SHP2 inhibitor on cervical squamous cell carcinoma from the perspective of ZAP70. Gong M; Liu P; He T; Zhang M; Li G Anticancer Drugs; 2021 Jun; 32(5):477-483. PubMed ID: 33661186 [TBL] [Abstract][Full Text] [Related]
48. Discovery of a SHP2 Degrader with In Vivo Anti-Tumor Activity. Miao J; Bai Y; Miao Y; Qu Z; Dong J; Zhang RY; Aggarwal D; Jassim BA; Nguyen Q; Zhang ZY Molecules; 2023 Oct; 28(19):. PubMed ID: 37836790 [TBL] [Abstract][Full Text] [Related]
49. Myeloid-specific disruption of tyrosine phosphatase Shp2 promotes alternative activation of macrophages and predisposes mice to pulmonary fibrosis. Tao B; Jin W; Xu J; Liang Z; Yao J; Zhang Y; Wang K; Cheng H; Zhang X; Ke Y J Immunol; 2014 Sep; 193(6):2801-11. PubMed ID: 25127857 [TBL] [Abstract][Full Text] [Related]
50. [The role of protein tyrosine phosphatases Shp-2 involved in the formation of the neuromuscular junction]. Zhao XT; Zhang Z Zhonghua Yi Xue Za Zhi; 2006 Apr; 86(15):1052-6. PubMed ID: 16784710 [TBL] [Abstract][Full Text] [Related]
51. Discovery of SHP2-D26 as a First, Potent, and Effective PROTAC Degrader of SHP2 Protein. Wang M; Lu J; Wang M; Yang CY; Wang S J Med Chem; 2020 Jul; 63(14):7510-7528. PubMed ID: 32437146 [TBL] [Abstract][Full Text] [Related]
52. Emerging chemical scaffolds with potential SHP2 phosphatase inhibitory capabilities - A comprehensive review. Tripathi RKP; Ayyannan SR Chem Biol Drug Des; 2021 Mar; 97(3):721-773. PubMed ID: 33191603 [TBL] [Abstract][Full Text] [Related]
53. SHP2 Targets ITK Downstream of PD-1 to Inhibit T Cell Function. Strazza M; Adam K; Lerrer S; Straube J; Sandigursky S; Ueberheide B; Mor A Inflammation; 2021 Aug; 44(4):1529-1539. PubMed ID: 33624224 [TBL] [Abstract][Full Text] [Related]
54. Tumor-associated macrophages (TAMs) depend on Shp2 for their anti-tumor roles in colorectal cancer. Wang S; Yao Y; Li H; Zheng G; Lu S; Chen W Am J Cancer Res; 2019; 9(9):1957-1969. PubMed ID: 31598397 [TBL] [Abstract][Full Text] [Related]
55. Targeting protein tyrosine phosphatase SHP2 for therapeutic intervention. Butterworth S; Overduin M; Barr AJ Future Med Chem; 2014; 6(12):1423-37. PubMed ID: 25329198 [TBL] [Abstract][Full Text] [Related]
56. Scaffold-based novel SHP2 allosteric inhibitors design using Receptor-Ligand pharmacophore model, virtual screening and molecular dynamics. Jin WY; Ma Y; Li WY; Li HL; Wang RL Comput Biol Chem; 2018 Apr; 73():179-188. PubMed ID: 29494926 [TBL] [Abstract][Full Text] [Related]
57. The src homology 2 domain-containing tyrosine phosphatase 2 regulates primary T-dependent immune responses and Th cell differentiation. Salmond RJ; Huyer G; Kotsoni A; Clements L; Alexander DR J Immunol; 2005 Nov; 175(10):6498-508. PubMed ID: 16272304 [TBL] [Abstract][Full Text] [Related]
59. Strategies Targeting Protein Tyrosine Phosphatase SHP2 for Cancer Therapy. Song Y; Wang S; Zhao M; Yang X; Yu B J Med Chem; 2022 Feb; 65(4):3066-3079. PubMed ID: 35157464 [TBL] [Abstract][Full Text] [Related]